Cosmologie
Model
Can be 1
, 2
, 3
, or 4
. Default value is Model = 1
.
1
for CPL model2
for Cardassian model3
for Interacting DE Model4
for Holographic Ricci Scale with CPL
H0 float
float defines the value of H_0 in Mpc/km/s. Default value is H_0 = 50.
omega float
float defines the value of \Omega_{0}. Default value is \Omega_{0} = 1.
lambda (or omegaX) float
float defines the normalized value of \lambda. (for a flat universe \Omega_{0} + \lambda = 1.) Default value \lambda = 0.
omegaK float
float defines the normalized value of the curvature of the Universe \Omega_k
wX (q, or w0) float
If Model is equal to 1, float defines the first parameter in the CPL model. If Model is equal to 2, float defines the q parameter in the Cardassian model. If Model is equal to 3, float defines the w_x parameter in the Interacting DE model. If Model is equal to 4, float defines the w_0 parameter in the Holographic Ricci scale with CPL.
wa (n, delta, or w1) float
If Model is equal to 1, float defines the second parameter in the CPL model. If Model is equal to 2, float defines the n parameter in the Cardassian model. If Model is equal to 3, float defines the \delta parameter in the Interacting DE model. If Model is equal to 4, float defines the w_1 parameter in the Holographic Ricci scale with CPL.
Additional remarks on the Cosmologie identifier
Model 1
Using the so-called CPL parameterization
w(z)=w_x+\frac{w_az}{1+z}c
proposed by Chevalier & Polarski (2001) and Linder (2003), the square of the Hubble parameter (normalized by H_0) can be written as
\frac{H(z)^2}{H_0^2}=\Omega_k(1+z)^2+\Omega_r(1+z)^4+\Omega_0(1+z)^3)+(1-\Omega_k-\Omega_r-\Omega_0)(1+z)^{3(1+w_x+w_a)}exp\left(\frac{-3w_az}{1+z}\right)
Certainly, in the code \Omega_r \equiv 0, always.
Model 2
The modified polytropic Cardassian Universe (see Gondolo & Freese, 2003) is a generalization of the original Cardassian model of Freese & Lewis (2002). In such Universe the Hubble parameter is given by:
\frac{H(z)^2}{H_0^2}=\Omega_k(1+z)^2+\Omega_r(1+z)^4+\Omega_0(1+z)^3\left[1+((\frac{1-\Omega_k-\Omega_r}{\Omega_0})^{q}-1)(1+z)^{3q(n-1)}\right]^{1/q}
Model 3
In the interacting Dark Energy model (Citation needed!) we have
\frac{H(z)^2}{H_0^2}=\Omega_k(1+z)^2+\Omega_r(1+z)^4+(1-\Omega_k-\Omega_r-\Omega_0)(1+z)^{3(1+w_x)}+\frac{\Omega_0}{\delta+3w_x}\left[\delta(1+z)^{3(1+w_x)}+3w_x(1+z)^{3-\delta}\right]
Model 4
Holographic Ricci Scale with CPL (Citation needed!):
\frac{H(z)}{H_0}=(1+z)^{\frac{3}{2}\frac{1+r_0+w_0+4w_1}{1+r_0+3w_1}}\left[\frac{1+r_0+3w_1z/(1+z)}{1+r_0}\right]^{-\frac{1}{2}\frac{1+r_0-3w_0}{1+r_0+3w_1}}
In this case,
w(z)=w_0+\frac{w_1z}{1+z}
and
r_0=\frac{\Omega_0}{1-\Omega_0}