# Cosmologie ## Model Can be `1`, `2`, `3`, or `4`. Default value is `Model = 1`. - `1` for CPL model - `2` for Cardassian model - `3` for Interacting DE Model - `4` for Holographic Ricci Scale with CPL ## H0 float float defines the value of $H_0$ in Mpc/km/s. Default value is $H_0 = 50$. ## omega float float defines the value of $\Omega_{0}$. Default value is $\Omega_{0} = 1$. ## lambda (or omegaX) float float defines the normalized value of $\lambda$. (for a flat universe $\Omega_{0} + \lambda = 1.$) Default value $\lambda = 0$. ## omegaK float float defines the normalized value of the curvature of the Universe $\Omega_k$ ## wX (q, or w0) float If Model is equal to 1, float defines the first parameter in the CPL model. If Model is equal to 2, float defines the $q$ parameter in the Cardassian model. If Model is equal to 3, float defines the $w_x$ parameter in the Interacting DE model. If Model is equal to 4, float defines the $w_0$ parameter in the Holographic Ricci scale with CPL. ## wa (n, delta, or w1) float If Model is equal to 1, float defines the second parameter in the CPL model. If Model is equal to 2, float defines the $n$ parameter in the Cardassian model. If Model is equal to 3, float defines the $\delta$ parameter in the Interacting DE model. If Model is equal to 4, float defines the $w_1$ parameter in the Holographic Ricci scale with CPL. ## Additional remarks on the Cosmologie identifier ### Model 1 Using the so-called CPL parameterization $$w(z)=w_x+\frac{w_az}{1+z}c$$ proposed by Chevalier & Polarski (2001) and Linder (2003), the square of the Hubble parameter (normalized by $H_0$) can be written as $$\frac{H(z)^2}{H_0^2}=\Omega_k(1+z)^2+\Omega_r(1+z)^4+\Omega_0(1+z)^3)+(1-\Omega_k-\Omega_r-\Omega_0)(1+z)^{3(1+w_x+w_a)}exp\left(\frac{-3w_az}{1+z}\right)$$ Certainly, in the code $\Omega_r \equiv 0$, always. ### Model 2 The modiļ¬ed polytropic Cardassian Universe (see [Gondolo & Freese, 2003]()) is a generalization of the original Cardassian model of [Freese & Lewis (2002)](). In such Universe the Hubble parameter is given by: $$\frac{H(z)^2}{H_0^2}=\Omega_k(1+z)^2+\Omega_r(1+z)^4+\Omega_0(1+z)^3\left[1+((\frac{1-\Omega_k-\Omega_r}{\Omega_0})^{q}-1)(1+z)^{3q(n-1)}\right]^{1/q}$$ ### Model 3 In the interacting Dark Energy model (Citation needed!) we have $$\frac{H(z)^2}{H_0^2}=\Omega_k(1+z)^2+\Omega_r(1+z)^4+(1-\Omega_k-\Omega_r-\Omega_0)(1+z)^{3(1+w_x)}+\frac{\Omega_0}{\delta+3w_x}\left[\delta(1+z)^{3(1+w_x)}+3w_x(1+z)^{3-\delta}\right]$$ ### Model 4 Holographic Ricci Scale with CPL (Citation needed!): $$\frac{H(z)}{H_0}=(1+z)^{\frac{3}{2}\frac{1+r_0+w_0+4w_1}{1+r_0+3w_1}}\left[\frac{1+r_0+3w_1z/(1+z)}{1+r_0}\right]^{-\frac{1}{2}\frac{1+r_0-3w_0}{1+r_0+3w_1}}$$ In this case, $$w(z)=w_0+\frac{w_1z}{1+z}$$ and $$r_0=\frac{\Omega_0}{1-\Omega_0}$$