

Deep learning on Galactic filaments

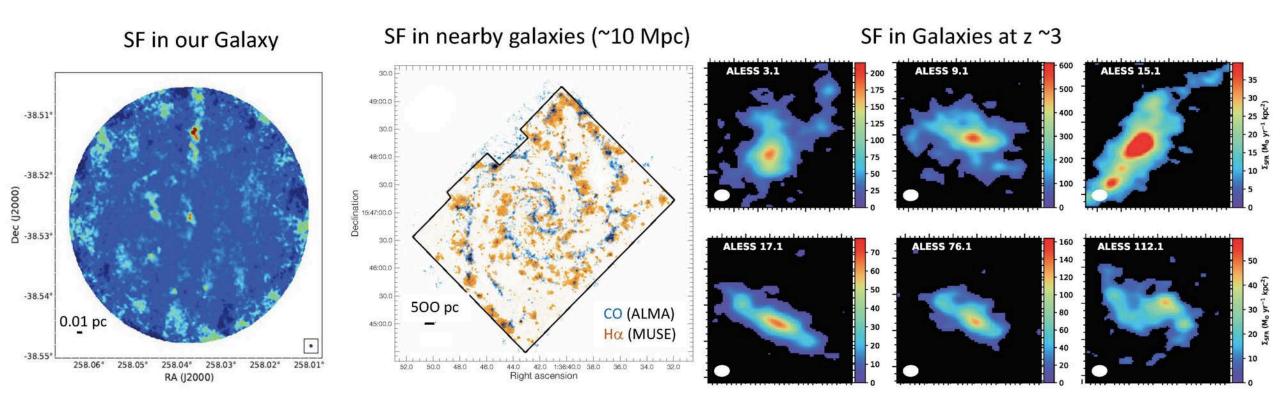
A. Zavagno F.-X. Dupé, M. Gray, E. Schisano

Outline

- Context
- Aims of the BigSF project. Method
- A proof-of concept study on Galactic Filaments
 - Data
 - Supervised Learning Method
 - Results
- Conclusions and perspectives

Context: Galactic & extragalactic star formation

BigSF: Galactic & extragalactic SF: Determining the role of environment on SF properties



Resolved spatial scale <0.01 pc

Resolved spatial scale ~100 pc

Resolved spatial scale ~ 500 pc

Adapted from Figueira+2018, Schinnerer+2019, Hodge+2019

Aims of the BigSF project

- Build an empirical model of the Galactic star formation using Big Data & ML
- Star formation as a fonction of the environment (physical conditions)
- Bridging the gap between Galactic & extragalactic star formation
- Extragalactic SF: Use the built model + change the spatial resolution

→ How SF depends on the environment in galaxies ?

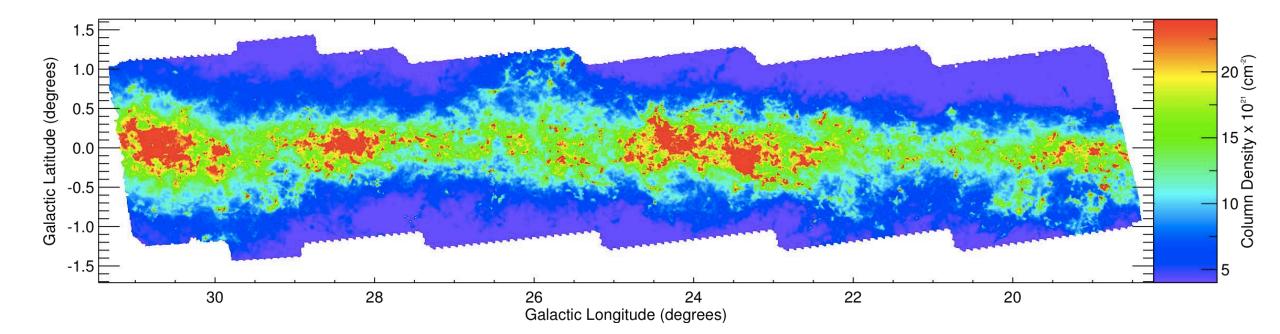
Method

- SF components: Filaments, clumps, cores, young stars
- Galactic SF observed from 10⁻³ (ALMA) to >10³ parsec + Information on the physical conditions
- Big data (surveys, pointed obs., images, spectra)
- Multi scale, multi wavelength \rightarrow multi view
- Heterogeneous data, missing data
- Challenges
 - Build the dataset(s) for the SF components (individuals & combined)
 - Learn on the dataset(s)
 - Build the *empirical* model

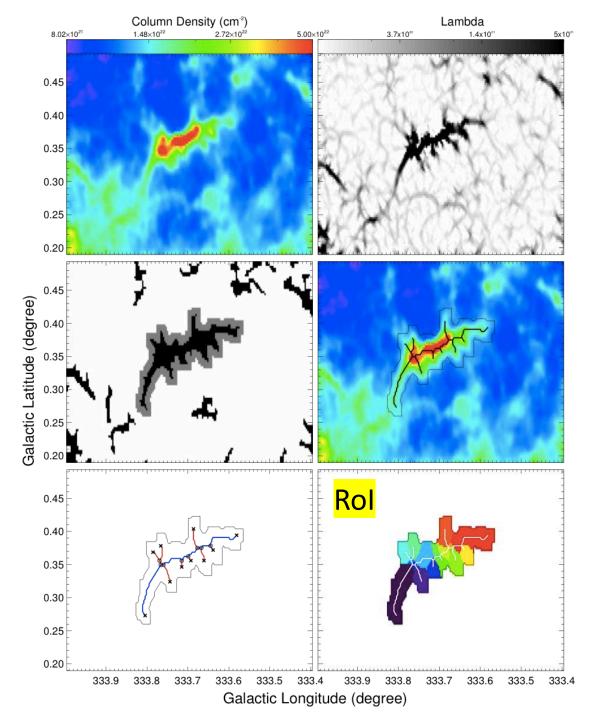
Galactic filaments

- Proof-of-concept study
- Testing the power/interest of ML on the detection of Galactic filaments

Data



Column density map of the Galactic plane with Hi-GAL (Schisano+2020, MNRAS)



Galactic Filaments (Schisano+2020, MNRAS)

Extraction method

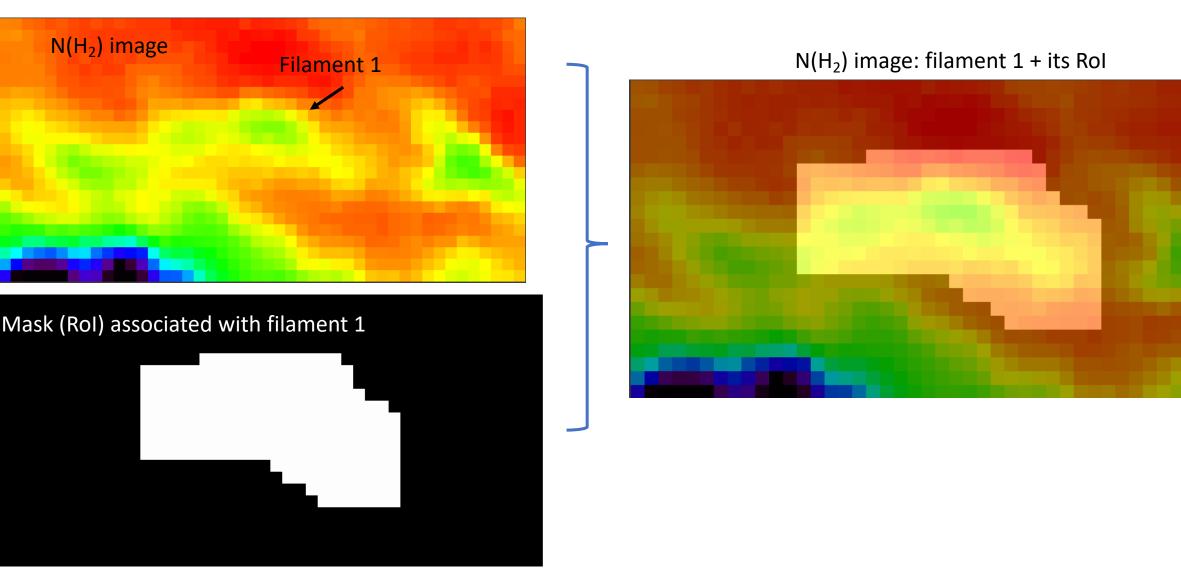
N(H₂) images

Region of Interest (Rol)

Database: 32 000 filaments (2D images)

RoI: mask (where the filament is) and 0 around

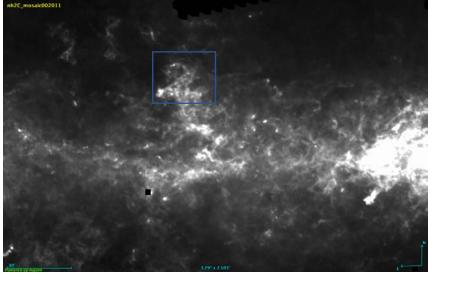
We want to learn from the data what a filament is. \rightarrow A *representation* of a filament



Method: supervised learning

- Database : Hi-GAL column density maps: 32 000 filaments + their associated Rol
- Images of different size
- For each filament: 3 patches (64x64) are taken from 3 random positions around the Rol
 - Must contain \geq 20% of the mask
 - Parts with missing data in the original image are not taken (saturation zones)
 - Data augmentation: 2 flips and 3 rotations

 \rightarrow ~ 900 000 patches + their associated RoI



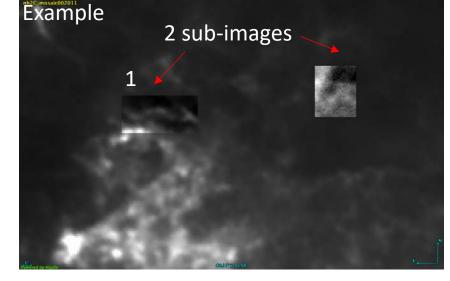


Image 1: Patch1+Mask1

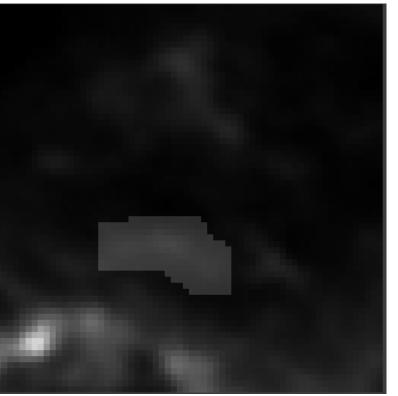
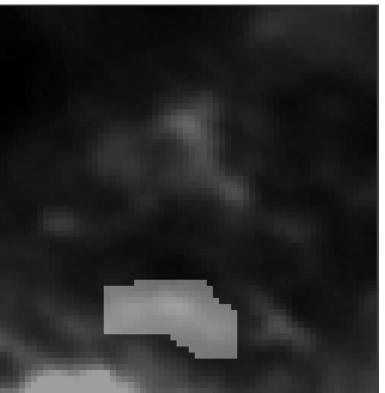


Image 1: Patch2+Mask2



Patch 1 for Image 1

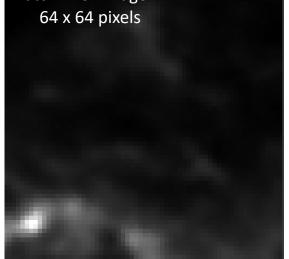
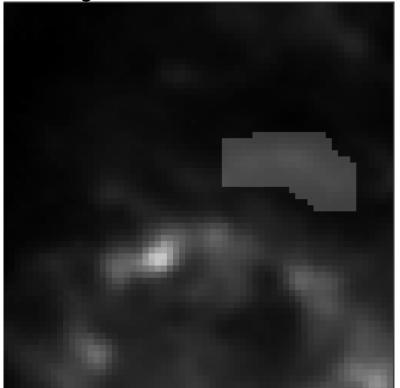
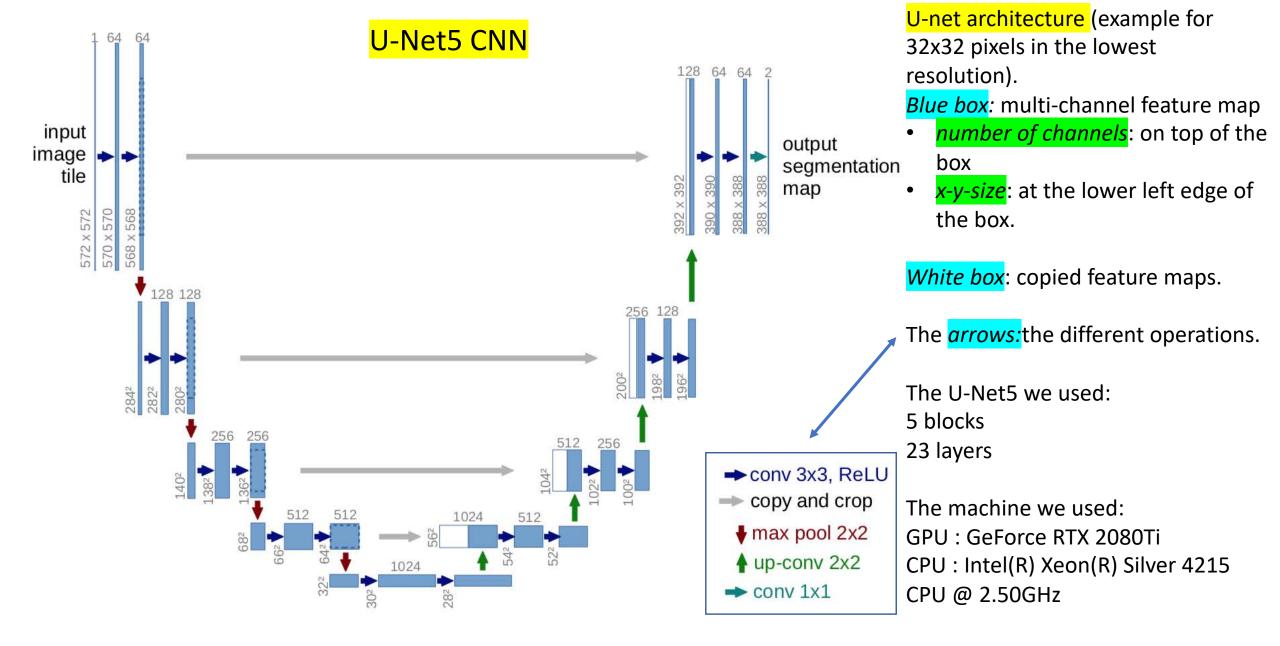


Image 1: Patch3+Mask3

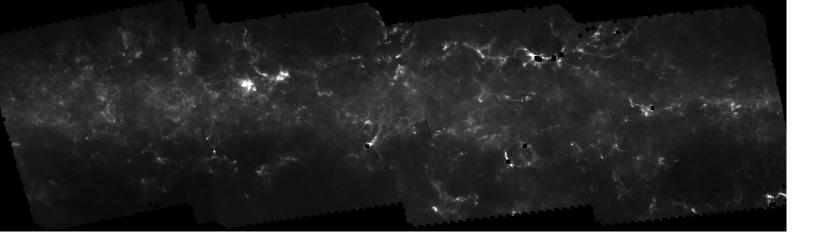


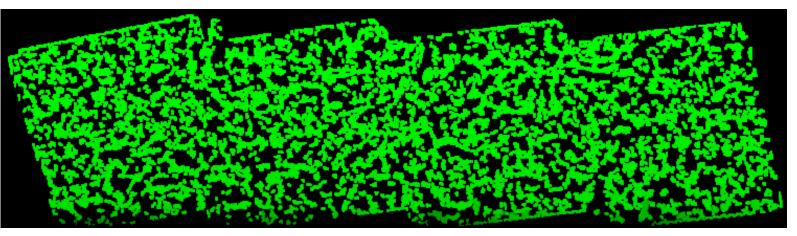
Method: supervised learning

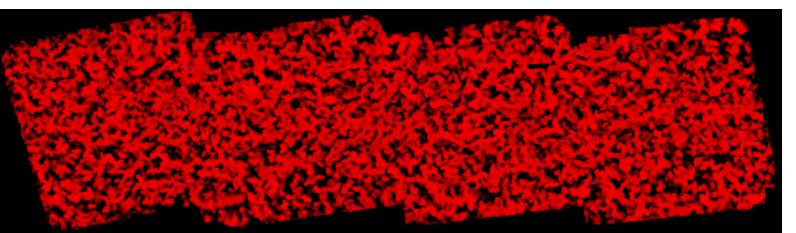
- U-Net5 Convolutional Neural Network used for image segmentation
- Base: 80% training set and 20% validation set
- Python + Keras: 20 epochs for the learning phase



Zhang, J. https://towardsdatascience.com/unet-line-by-line-explanation-9b191c76baf5 Ronneberger+2015 arXiv:1505.04597 Results: Galactic Plane 349°-356° (not seen in the learning)







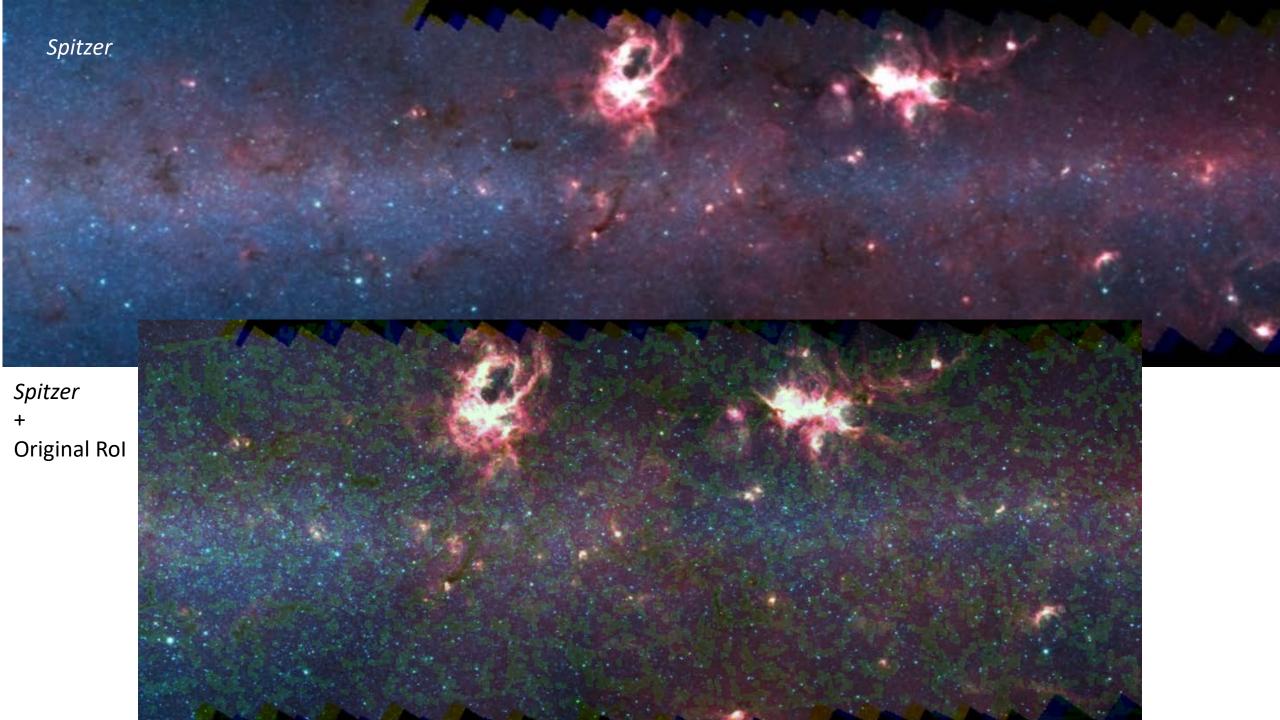
Original N(H₂) image Column density map *Herschel* Hi-GAL 349°-356° (Schisano+2020)

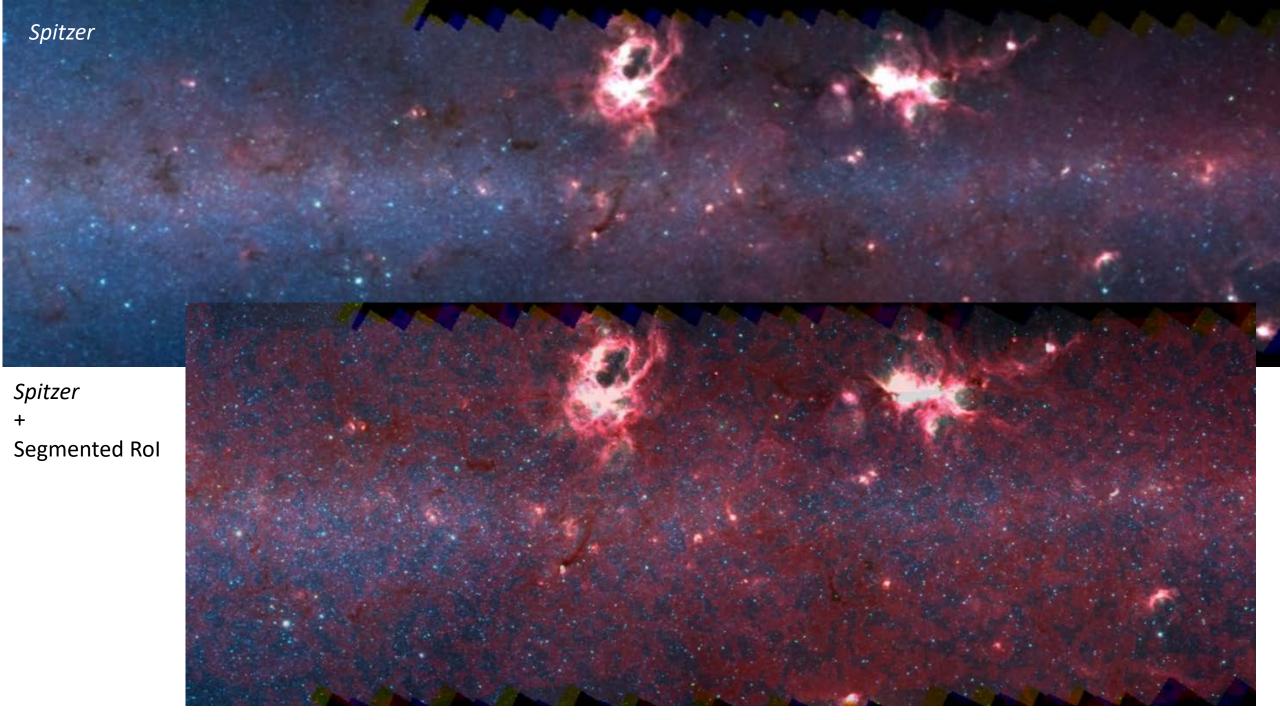
Original Rol image

Segmented Rol image

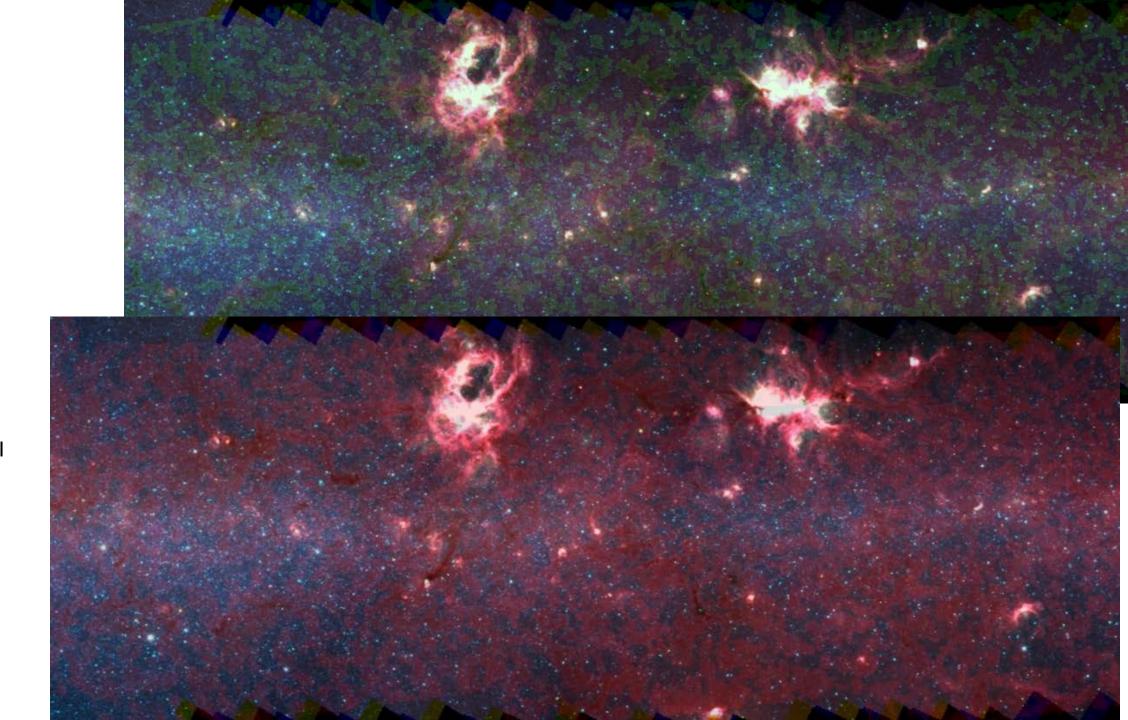
Herschel Hi-GAL N(H₂) (349°-356°)

Spitzer IRAC mid-IR





Spitzer + Original Rol



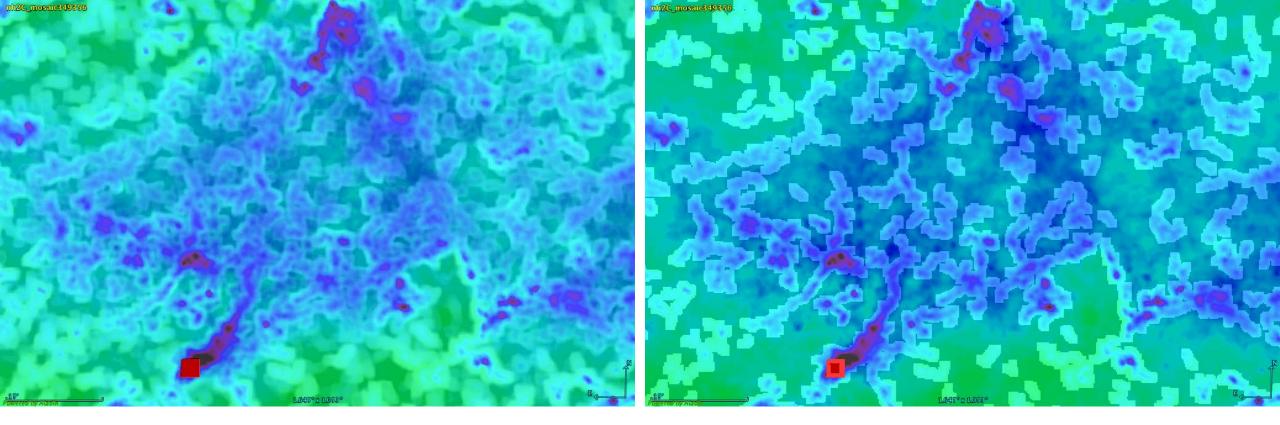
Spitzer + Segmented RoI

Result

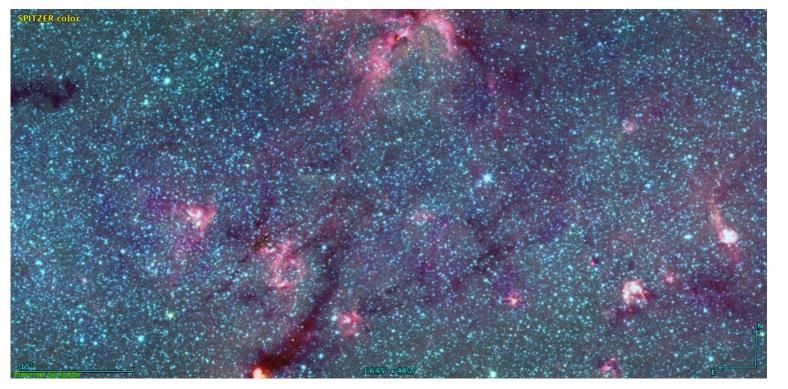
Higher coverage for the segmented Rol image

but

are the low level identified structures « real » filaments ?

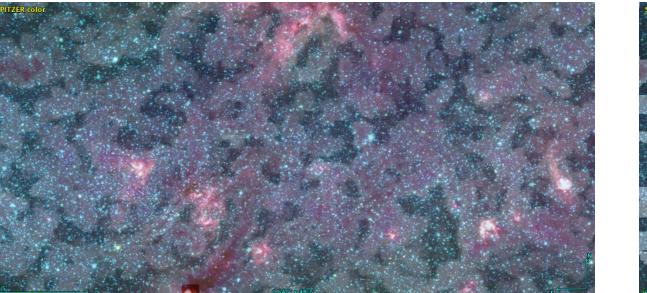


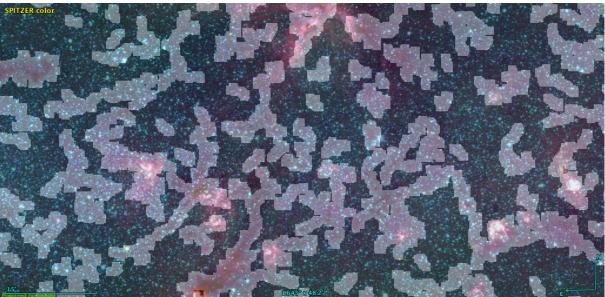
N(H₂) + segmented Rol Smoother coverage of the structures N(H₂) + original Rol



Spitzer image Filaments in dark

Rol segmented

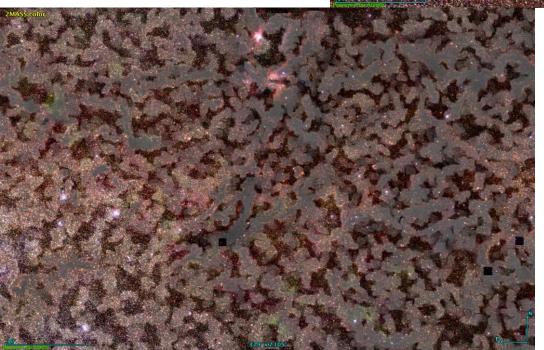


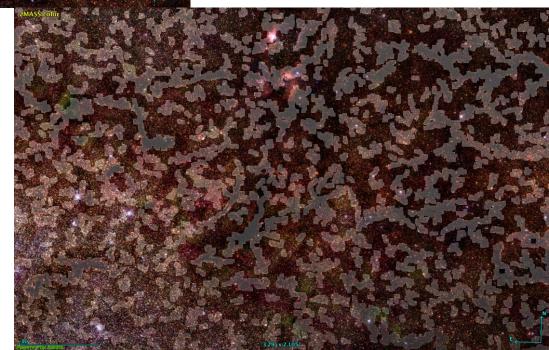


Rol original

2MASS image Filaments in dark

Rol original





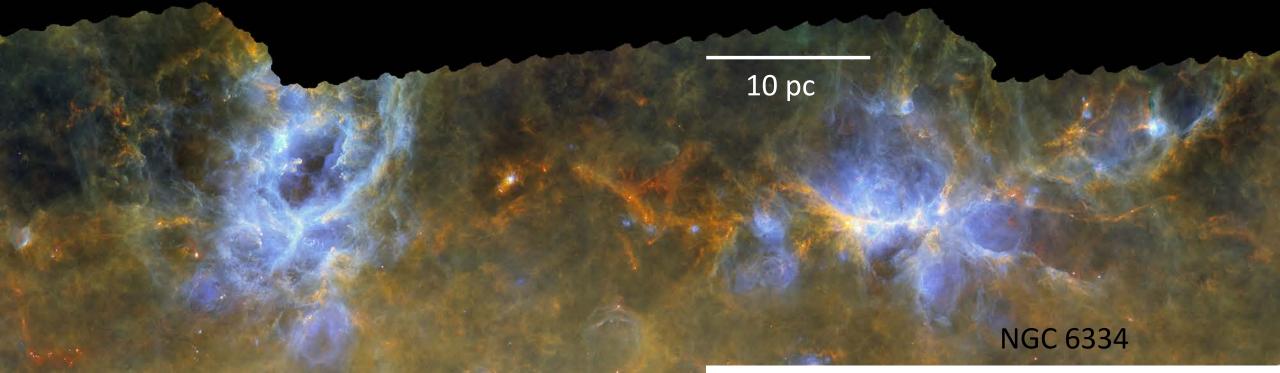
Conclusions

2D images and supervised learning

- Comparaison between 2 methods (classical extraction and ML)
 - Hi-GAL images database
 - Comparison with « never seen » images at other wavelengths: impressive recovery of the filamentary structures by the learning. To be confirmed.

Development of supervised and unsupervised learning (ongoing)

- Refine the database: filaments properties (distance, physical properties, etc...)
- \rightarrow test the learning with the new base

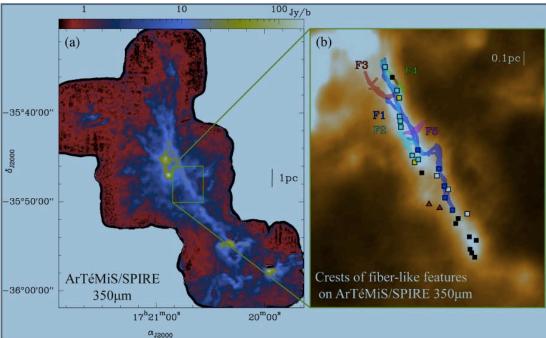


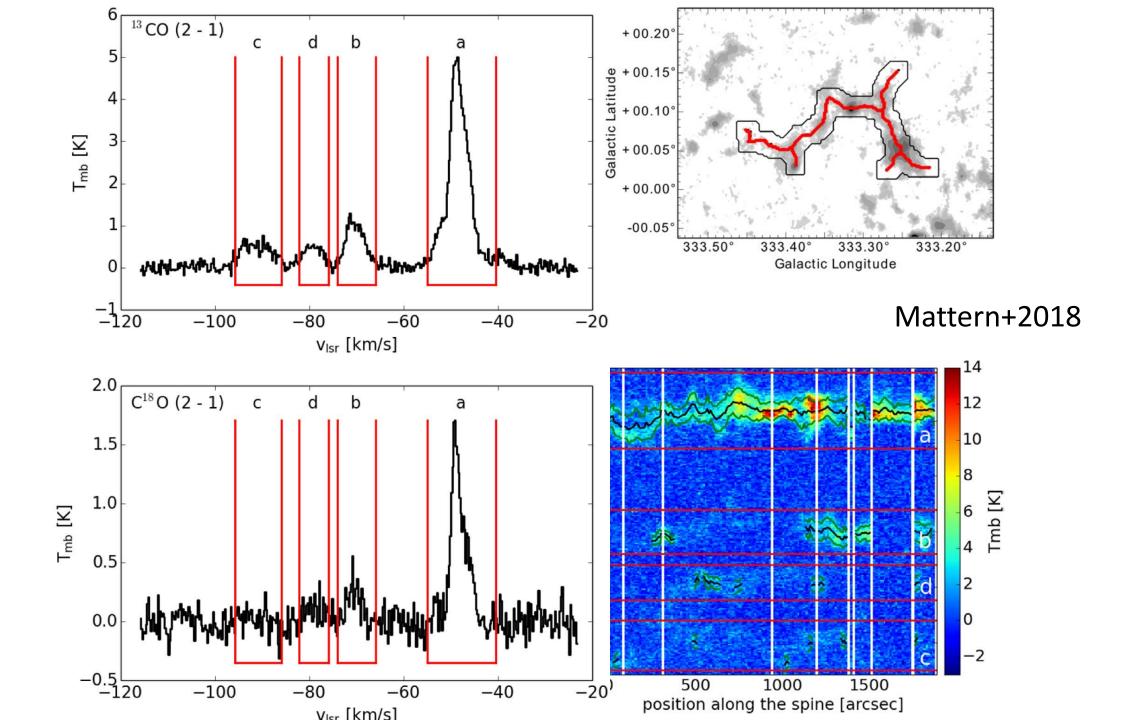
NGC 6357

Herschel view of NGC 6357 and NGC 6334.

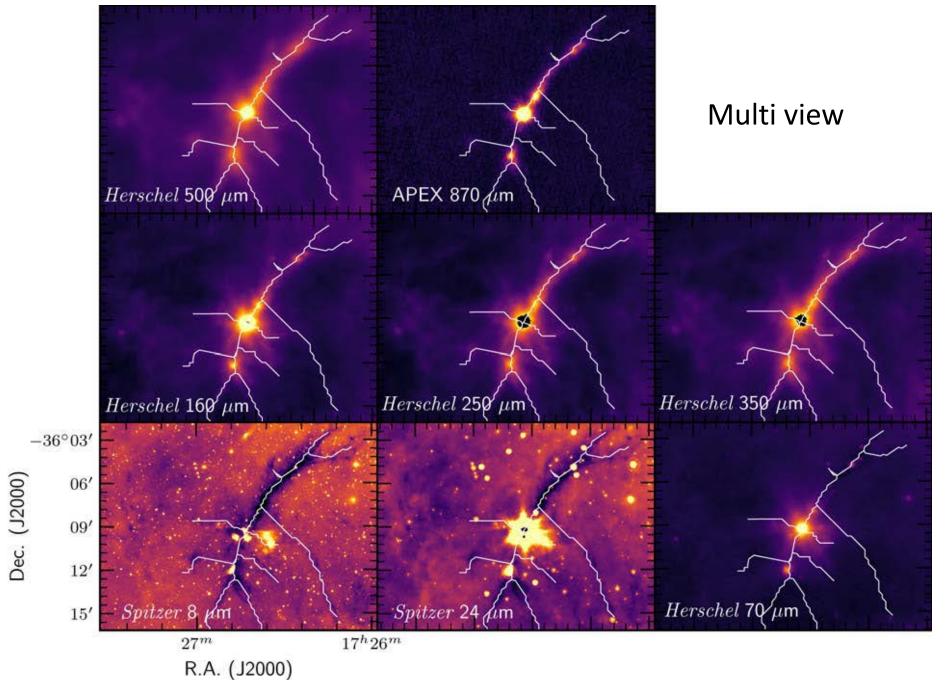
70 microns, 160 microns and 350 microns

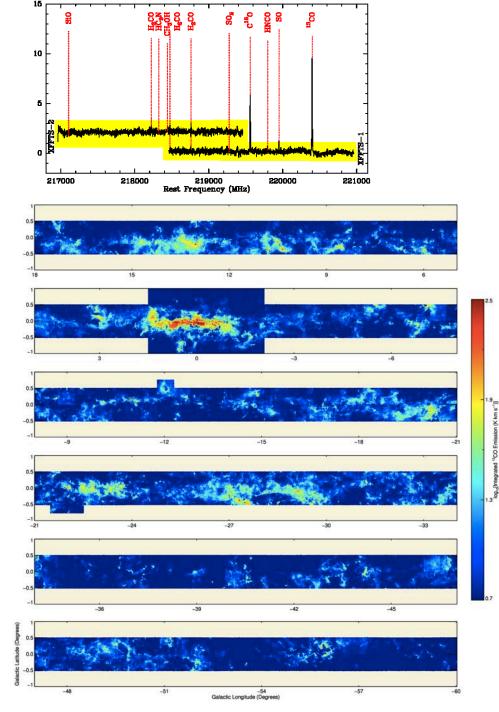
ArTéMiS-APEX+SPIRE et ALMA





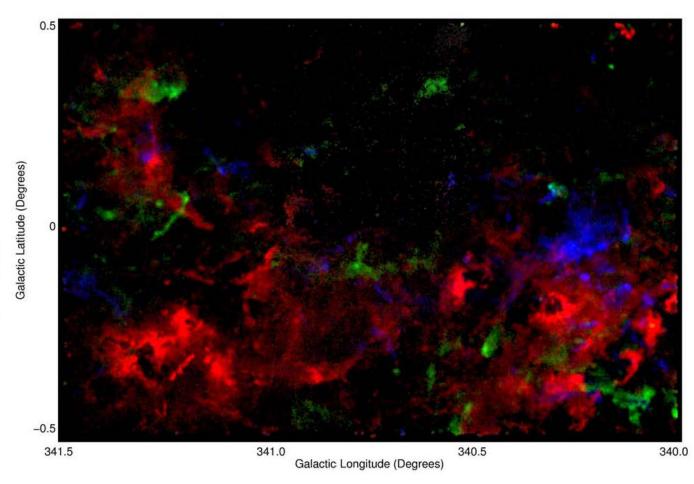
• Galactic filaments (Leurini et al. 2019, A&A)





Spectroscopy \rightarrow Velocity \rightarrow 3D vision

SEDIGISM data Schuller+2020 Duarte-Cabral+2020



Perspectives

- Multi view \rightarrow to be done
 - Challenges: Big Data, heterogeneous data (2D, 3D) multi resolution
- Hyperspectral deep learning (Signoroni+2019, Sun & Bourennane 2020)
 - Take into account the wealth of existing data (multi scale, multi wavelength)
 - To be included in the learning
 - Numerical simulations
 - New extraction method getsf