# PIEMD Set the potential profile to the type dPIE described in [Eliasdottir et al. 2007](http://arxiv.org/abs/0710.5636). In `set_lens.c:set_dynamics()`, the impact parameter is computed as such: $$b_0 = \frac{6 \pi \sigma_0^2}{c^2}$$ with $\frac{\pi}{c^2} = 7.2 10^{-6}$ arcsec / $(\rm km/\rm s)^2$. To obtain this value, $\pi$ is converted to 648,000 arcsec. In file `e_grad2.c`, the 2nd derivatives of the gradient are computed as such with the core radius $a$ and the cut radius $s$ in arcsec: $$t05 = b_0 \frac{s}{s - a}$$ $$z = \sqrt{R^2 + a^2} - a - \sqrt{R^2 + s^2} +s$$ $$p = \left( 1 - \frac{1}{\sqrt{1 + \frac{R^2}{a^2}}} \right) \frac{a}{R^2} - \left( 1 - \frac{1}{\sqrt{1 + \frac{R^2}{s^2}}} \right) \frac{s}{R^2}$$ $$\partial^2_{xx} = b_0 \frac{s}{s - a} \left( p\frac{x^2}{R^2} + z \frac{y^2}{R^4} \right)$$ $$\partial^2_{yy} = b_0 \frac{s}{s - a} \left( p\frac{y^2}{R^2} + z \frac{x^2}{R^4} \right)$$ $$\partial^2_{xy} = b_0 \frac{s}{s - a} \left( p\frac{x\ y}{R^2} - z \frac{x\ y}{R^4} \right)$$ From the 2nd derivatives, the convergence is computed in `g_mass.c:computeKmass()` $$\text{To fill the equation} -> why?$$ $$\Sigma(R) = \frac{\sigma_0^2}{2 G} \frac{s}{s -a} \left(\frac{1}{\sqrt{R^2 + a^2}} - \frac{1}{\sqrt{R^2 + s^2}} \right)$$ The theoretical expression taken from Eq. 7 in [Limousin et al. 2005](http://arxiv.org/abs/astro-ph/0405607) is $$\Sigma(R) = \frac{\sigma_0^2}{2 G} \frac{s}{s -a} \left(\frac{1}{\sqrt{R^2 + a^2}} - \frac{1}{\sqrt{R^2 + s^2}} \right)$$ and the critical mass is $$\Sigma_{crit} = \frac{c^2}{4 \pi G} \frac{D_{OS}}{D_{OL} D_{LS}}$$ By taking the ratio with $\Sigma_0 = \frac{\sigma_0^2}{2G}$, we find $$\kappa_{th} = \frac{\Sigma_0}{\Sigma_{crit}} = \frac{2 \pi \sigma_0^2}{c^2} \frac{D_{OL} D_{LS}}{D_{OS}}$$ Therefore the relation between Lenstool and the theory is $$\kappa_{th} = \frac{2}{3}\ \kappa_{lt}$$ Which translates in velocity dispersion as $$\sigma_{\rm 0\ th} = \sqrt{\frac{3}{2}}\ \sigma_{\rm 0\ lt}$$ Note that the [mass]() keyword corrects for this factor internally, and returns the theoretical convergence map. We give an instance of dPIE potential: ``` potential 1 profile 81 x_centre 0. y_centre 0. ellipticity 0. angle_pos 0. core_radius_kpc 100. cut_radius_kpc 1500. v_disp 1000. z_lens 0.2 end ```