``idPIE`` profile description ============================== .. _dPIE_summary: ``dPIE`` summary ----------------- A summary on the **dual Pseudo-Isothermal Elliptical** matter distribution (``dPIE``) may be found `here `_, and this type of gravitational potential is described at length in `Elìasdòttir et al. (2007, Appendix A) `_ . It is identified in ``lenstool`` by id: ``81``. Assuming we neglect ellipticity in this documentation, ``dPIE`` profiles write: .. math:: \rho_{\mathrm{dPIE}}(r) = \frac{\rho_0}{\left[ 1 + \left( \frac{r}{s} \right)^2 \right] \left[ 1 + \left( \frac{r}{a} \right)^2 \right]} where :math:`\rho_0` is the density normalisation, :math:`a` the core radius, and :math:`s` the cut radius. A sum of ``dPIE`` profiles may be assumed to represent the total matter density :math:`\rho_m` (baryons + dark matter) in the lens: .. math:: \rho_m = \sum_i \rho_{\mathrm{dPIE}, i}. Thus the profile of the gravitational potential :math:`\Phi` may be deduced from the ``dPIE`` sum: .. math:: \Phi(r) = - 4 \pi G \sum_i \int_0^r \mathrm{d}s s^{-2} \int_0^s \mathrm{d}t t^2 \rho_{\mathrm{dPIE}, i}(t). For one ``dPIE`` profile :math:`\rho_{\mathrm{dPIE}}(r)`, the potential writes: .. math:: \Phi_{\mathrm{dPIE}}(r) = \frac{a^2 s^2}{a^2 - s^2} \left[ \frac{s}{r} \arctan \frac{r}{s} - \frac{a}{r} \arctan \frac{r}{a} + \frac{1}{2} \ln \left( \frac{r^2 + s^2}{r^2 + a^2} \right) \right]. ------------------------------------------------------- .. _idPIE_profile: Hydrostatic ``idPIE`` :math:`n_e` ICM density profile ------------------------------------------------------- If we assume the intra-cluster medium (ICM) to be in hydrostatic equilibrium, we may simplify the Navier-Stokes equation to: .. math:: \frac{\partial_r \left( n_e T_e \right)}{n_e} = \frac{\mu_g m_a}{k_B} \partial_r \Phi, where :math:`n_e` is the ICM electron number volume density, :math:`T_e` the ICM electron temperature, :math:`\mu_g \approx 0.60` the mean molecular weight of the ICM gas, :math:`m_a \approx 1.66 \times 10^{-27}` kg the unified atomic mass, and :math:`k_B` the Boltzmann constant. Assuming the temperature :math:`T_e` to be a function of the electronic density, we can integrate this expression to: .. math:: \mathcal{J}_z (n_e) = \int_0^{n_e} \mathrm{d} n \frac{n T_e (n)}{n} = \frac{\mu_g m_a}{k_B} \Phi (r), where :math:`\mathcal{J}_z` is a bijection, as long as the radial density profile :math:`\rho_m` is a sum of ``dPIE`` potentials. Using a self-similar polytropic temperature profile, the :math:`\mathcal{J}_z` integral only depends on redshift :math:`z`. Bijections being invertible functions, we may revert the previous equation, thus yielding the ``idPIE`` density profile: .. math:: n_e = \mathcal{J}^{-1}_z \left( \frac{\mu_g m_a}{k_B} \Phi (r) \right). ------------------- .. _Xray_opt_idPIE: ICM profile optimisation with ``idPIE`` profile ------------------------------------------------ Given the :math:`n_e` ICM electron density, we can compute :math:`S_X`, the X-ray surface brightness: .. math:: S_X (x, y, \Delta E) = \frac{1}{4 \pi (1 + z)^4} \frac{\mu_e}{\mu_H} \int_{\mathrm{l.o.s.}} n_e^2 (x, y, l) \Lambda (\Delta E (1 + z), T_e, Z) \mathrm{d}l, where :math:`\Delta E` is the observed energy band, :math:`z` is the cosmological redshift of the lens, :math:`\mu_e` and :math:`\mu_H` are respectively the mean molecular weight of electron and hydrogen, and :math:`\Lambda` is the normalised cooling function (in :math:`\mathrm{J.m}^3.\mathrm{s}^{-1}`) for an ICM electron temperature :math:`T_e` and metallicity :math:`Z`. Here, we assume the metallicity to be constant throughout the cluster :math:`Z = 0.3 Z_{\odot}`. Once the model surface brightness map computed, it is compared to observations of *Chandra* or *XMM-Newton* X-ray satellites. .. note:: TODO: See section on statistics for more details.