ICM Temperature models ========================== If no temperature map is provided, then it is necessary to provide a temperature model in order to compute the different ICM observables (X-ray surface brightness, SZ effect temperature contrast, etc.). For purely lensing, this is not necessary. .. we should think of producing a temperature map using this, and of making it an independent keyword, out of X-ray or SZE sections ``Temp0`` is the pivot temperature model, eq. (17) in `Allingham 2024 `_: :math:`T_0(z) = T_{500,c} (z) T_{\rm ref}`. It may be computed using routine ``predT``: .. code-block:: console predT0 where the mass :math:`M_{500,c}` is in :math:`M_{\odot}`, and the ```` corresponds to the regression used for :math:`P_e (n_e)`. By default, use ``polyEv1`` for the latter. ``Jz_array`` indicates how to compute the Jz function, relating the potential to the ICM density :math:`n_e`. It takes three arguments: - An integer. ``0``: do not perform the computation. ``1``: perform it. - A string for the model type. By default, use ``polyE``. Other option is ``polyA``, which should be more up-to-date. - A second string for the name of the output array. If the array is not computed (``0``), this array must already exist. The different temperature models are listed here: - ``polyEv1``: uses the reduction of a polytropic temperature distribution, with a varying index. Reduction over 12 X-COP clusters. See parameters values in the table below. - ``polyAv1``: uses the reduction of a polytropic temperature distribution, with a varying index. Reduction over 12 X-COP clusters, and 3 strong lensing clusters' *XMM-Newton* spectrocopic data. See parameters values in the table below. The polytropic index model writes: .. math:: T_e &= \eta_T T_{500,c} \left( \frac{n_e E(z)^{-2}}{\eta_n} \right)^{\Gamma (n_e) - 1}, where :math:`E(z) = H(z)/H_0` is the scaled Hubble factor at a cluster redshift :math:`z`. Assuming the polytropic index :math:`\Gamma` to vary with the ICM density, .. math:: \Gamma (n_e) &= \Gamma_0 \left[ 1 + \Gamma_S \arctan \left( \ln \frac{n_e E(z)^{-2}}{\eta_n} \right) \right], where .. math:: \eta_T = (1e6*3.426e-3/8.85)*(\eta_P/\eta_n). We specify the parameters of different models in the table below. .. table:: ICM Temperature model parameters :widths: 20 15 15 15 15 +----------------+-----------------+-----------------------------------+-------------------+-----------------------+ | Id | :math:`\eta_P` | :math:`\eta_n` [cm :math:`^{-3}`] | :math:`\Gamma_0` | :math:`\Gamma_S` | +================+=================+===================================+===================+=======================+ | | | | | | +----------------+-----------------+-----------------------------------+-------------------+-----------------------+ | ``polyEv1`` | | | | | +----------------+-----------------+-----------------------------------+-------------------+-----------------------+ | ``polyAv1`` | 4.61 | :math:`1.54\times 10^{-3}` | 1.02 | -0.15 | +----------------+-----------------+-----------------------------------+-------------------+-----------------------+