Infrared Background, Anisotropies & Spectral Line Intensity Mapping

Asantha Cooray

Foreground Stars and Galaxies

Background Glow [foreground masked]

アサンタ クーレイ

The Infrared Background Glow in Boötes NASA / JPL Caltech / A. Cooray (UC Irvine) Spitzer Space Telescope • IRAC ssc2012-14a

Asantha Cooray, UC Irvine

• Fluctuations in the near-IR background with Spitzer and Hubble, and CIBER

• Spectral Line Intensity Mapping in near-IR (expanding the science case of WISH and WISHspec)

Asantha Cooray, UC Irvine

Total IR EBL intensity uncertain by at least a x10 at 1-2 microns

Instead of absolute EBL, study IR background anisotropies as a probe of faint galaxy populations.

(Cooray, Bock, Keating, Lange & Matsumoto 2004, ApJ)

IR Background Fluctuations Measurements

Asantha Cooray, UC Irvine

COSMOS

Techniques to handle mask - borrowed from CMB analyses.

IR Background Fluctuations Measurements

Asantha Cooray, UC Irvine

WISH September 2014

CDF-S

Standard Spitzer software, MOPEX

Our self-calibrated mosaic

Self-calibrated mosaics are aimed at preserving the background, unlike MOPEX and HST multi-drizzle for WFC3. Based on works by Fixsen et al. 1998 & Arendt et al. 2010 (Our internal code is cross-checked against Rick Arendt's routines).

Spitzer Background Fluctuations in SDWFS

Cooray et al. 2012, Nature, 490, 514

Asantha Cooray, UC Irvine

Spitzer Background Fluctuations in SDWFS

Cooray et al. 2012, Nature, 490, 514

Asantha Cooray, UC Irvine

Mode-coupling due to masked sources

Cooray et al. 2012, Nature, 490, 514

Asantha Cooray, UC Irvine

Spitzer fluctuations are real! Not an instrumental systematic nor zodiacal light Its extragalactic, repeatable, time-independent.

Asantha Cooray, UC Irvine

What is the origin of these IR fluctuations?

Asantha Cooray, UC Irvine

 \leq

 10^{-3}

Measured shot-noise agrees with prediction for faint galaxies below the detection threshold (Helgason et al. 2012)

Argues against a new source population to explain the observations

Cooray et al. 2012, Nature, 490, 514

What is the origin of these IR fluctuations? Intra-halo light

Intrahalo light: stars outside of the galactic disks and in the outskirts of dark matter halos due to tidal stripping and galaxy mergers.

Simulation/theory predictions: Purcell et al. 2007 Watson et al. 2012

Intra-halo light in galaxy-scale dark matter halos

Cooray et al. 2012, Nature, 490, 514

Asantha Cooray, UC Irvine

Reionization signal in IR fluctuations?

CANDELS, a multi-cycle program with Hubble Space Telescope. WEBSITE: CANDELS.UCOLICK.ORG

Field	Area	Program ID	Dates
UDS	210 sq arcmins	12064	11/08/10-11/25/10
		12064	12/27/10-01/10/11
EGS	90 sq arcmins	12063	04/02/11-04/08/11
		12063	05/22/11-06/02/11
COSMOS	210 sq arcmins	12440	12/06/11-02/25/12
		12440	01/23/12-04/16/12
COSMOS	1.8 sq degrees	9822/10092	10/03- $5/04$

Asantha Cooray, UC Irvine

10-4

10⁹

1010

a)

107

106

Reionization signal in IR fluctuations?

CANDELS, a multi-cycle program with Hubble Space Telescope. WEBSITE: CANDELS.UCOLICK.ORG

104

105

WISH September 2014

1013

1014

1015

1011

1012

 $M (M_{\odot})$

Asantha Cooray, UC Irvine

10-2

10-3

Reionization signal in IR fluctuations?

CANDELS, a multi-cycle program with Hubble Space Telescope. WEBSITE: CANDELS.UCOLICK.ORG

Asantha Cooray, UC Irvine

CIBER1:

First flight February 2009, second July 2010. Third flight February 2012 (all from White Sands, NM). Fourth June 2013.

Fourth flight was a non-recovery longer flight from Wallops, VA; CIBER1 payload dumped in Atlantic.

Upgrade to CIBER2 completed; pending four additional flights from NASA 2015-2020.

Results paper (Zemcov et al. 2014) in final review with Science

THE CASE FOR SPACE

Airglow Emission

- Atmosphere is 500 2500 times brighter than the astrophysical sky at 1-2 μ m
- Airglow fluctuations in a 1degree patch are 10⁶ times brighter than CIBER's sensitivity in 50 s
- Brightest airglow layer at an altitude of 100 km... can't even use a balloon

H-BAND 9° X 9° IMAGE OVER 45 MINUTES FROM KITT PEAK WIDE-FIELD AIRGLOW EXPERIMENT: HTTP://PEGASUS.PHAST.UMASS.EDU/2MASS/ TEAMINFO/AIRGLOW.HTML

Asantha Cooray, UC Irvine

Asantha Cooray, UC Irvine

CIBER-1: before third flight

CIBER: Does exist! Recovery after flights

USING FRAUNHOFER LINES TO TRACE ZODIACAL INTENSITY

Zodiacal Light is just scattered sunlight

Features in the solar spectrum are mimiced in Zodiacal light

The solar spectrum gives a precise tracer of the absolute Zodiacal intensity

But reality is messy

Atmospheric scattering, emission, and extinction

- scattered ZL
- scattered starlight
- airglow
- etc

Calibration on diffuse sources

FOR DETAILS SEE: DUBE *ET AL*. 1979 BERNSTEIN *ET AL*. 2002 MATILLA 2003

Asantha Cooray, UC Irvine

NARROW-BAND SPECTROMETER

How can a rocket experiment compete with these?

Table 5.2	Comparison	with Existing	Instruments

Instrument	Bands	FOV	Sub-	Etendue
	[µm]		fields	
CIBER2	0.6, 0.9,	85' x 85'	1	1
	1.4, 2.1			
CIBER1	0.9, 1.6	120' x 120'	1	0.1
NICMOS	1.1, 1.6,	1' x 1'	9900	0.002
	2.1			
WFC3	0.6, 1.0,	2' x 2'	1500	0.01
	1.4, 1.6			
Akari	2.3, 3.2,	12' x 12'	50	0.02
	4.1			
Spitzer	3.6, 4.5	5' x 5'	270	0.01

Notes: Etendue = Area x Ω x Simultaneous Bands Sub-fields = number of pointings to cover 2 sq. degrees

Asantha Cooray, UC Irvine

Parameter	CIBER2				Units		
Aperture		28.5				cm	
Pixel size		4				arcseconds	
Array		HgCdTe					
Format			204	48 ²			pixels
FOV		1.1 x 2.2 for imager bands, 0.4 for LVF				degrees	
Dark current		<0.05				e-/s	
RN (CDS)		12				e-	
Band	1	2	3	4	5	6	
λ	600	800	1030	1280	1550	1850	nm
$\Delta\lambda/\lambda$	0.33	0.25	0.24	0.20	0.20	0.16	
Array QE	0.90	0.80	0.83	0.81	0.82	0.82	
Optics QE	0.75	0.73	0.81	0.85	0.87	0.87	
Photo current	9.5	6.8	8.1	7.8	7.7	3.8	e-/s
νΙν	525	450	400	380	320	224	$nW m^{-2} sr^{-1}$
δνΙν (1σ/pix)	38.0	44.8	33.9	30.6	25.0	23.0	
δFv (3σ)	21.5	21.1	21.0	21.0	21.0	20.9	AB mag
	CIBER-1		10'				

Table 1. CIBER2 imager sensitivity in a nominal single 35 s observation

CIBER-2

4 flights starting late 2015

Expanding the WISH, WISH-spec science case

(a) Multi-band IR background anisotropies in WISH imaging data especially deep survey - can separate IHL from a high-z reionization component. (CIBER2 -> WISH natural transition)

(b) 2D Galaxy clustering in photometry data + 3D clustering in spectroscopy data

- can WISHspec be used to calibrate photo-z's of faint galaxies below Euclid grism detection threshold (?)

(c) WISHspec IFU allows spectral line intensity mapping, especially Halpha over 1000 sq. degrees; and Ly-alpha during reionization