Dust attenuation in the universe: the UV and the IR points of view

Véronique Buat (LAM, France)
Sébastien Heinis (UMD, USA),
Nagisa Oi (ISAS),
Denis Burgarella (LAM, France)

And many other collaborators from Herschel and AKARI surveys teams

Sendai-november 7th 2014
Both UV and IR emissions are related to recent star formation and to dust attenuation.
Three different measurements of dust attenuation in the universe

- A global point of view:
 UV and IR luminosity densities
- UV emitting galaxies:
 $Z=1.5$, 3 & 4 COSMOS field with Herschel (HERMeS data)
- IR selected galaxies
 NEP-AKARI field, 0$<z<2$
A work based on several Herschel surveys

- HerMES (P.I.: S. Oliver),
- GOODS-Herschel (P.I.: D. Elbaz)
- + PEP (P.I.: D. Lutz)

COSMOS and CDFS fields
HerMES Data Release 2 Field Positions

GOODS-H-CDFS field at 24-100-160 μm

IRAS dust map (Schlegel et al, 1998)
Equatorial coordinates
The NEP-AKARI deep survey
Three different measurements to be compared

• **A global point of view:**
 UV and IR luminosity densities
Takeuchi, Buat & Burgarella+06
GALEX & SPITZER

Burgarella, Buat +13
Herschel and optical surveys

Attenuation increases up to $z=1$ and then decreases $A_{\text{UV}}(z=0) \sim A_{\text{UV}}(z=4)$
Three different measurements to be compared

• A global point of view:
 UV and IR luminosity densities

• UV emitting galaxies:
 $Z=1.5, 3 \& 4$ COSMOS field with Herschel (HERMeS data)
Study of UV selected galaxies in the COSMOS field @ z=1.5, 3 & 4
Heinis+13,+14

UV selected Samples

Based on photometric redshifts (Ilbert+13)

- FUV restframe selections
 - \(z \sim 1.5 \): u-band selection \((1.2 < z < 1.7)\), 41,102 galaxies
 - \(z \sim 3 \): r-band selection \((2.75 < z < 3.25)\), 23,774 galaxies
 - \(z \sim 4 \): i-band selection \((3.5 < z < 4)\), 7,713 galaxies
Adding the IR to the UV:
Almost no counterpart of UV selected sources in Herschel images!!

Less than 1% of galaxies are detected ⇒ stacking
Stacking per bin of L_{FUV}

L_{IR} measured by fitting Dale & Helou (2002) templates on SPIRE data

$A_{\text{FUV}} = f(L_{\text{IR}}/L_{\text{FUV}})$ (Buat+05)

→ LIRGs and sub-LIRGs

Sendai-november 7th 2014
Dust attenuation $L_{\text{IR}}/L_{\text{FUV}}=\text{IRX}$ versus M_* for UV selected galaxies and LBGs

L_{IR} measured by fitting Dale & Helou (2002) templates on SPIRE data

$A_{\text{FUV}} = f(L_{\text{IR}}/L_{\text{FUV}})$ (Buat+05)

Consistent results found by Panella+14 for a mass selection

Sendai-november 7th 2014
Three different measurements to be compared

- **A global point of view:**
 UV and IR luminosity densities

- **UV emitting galaxies:**
 \(Z=1.5, 3 \& 4\) COSMOS field with Herschel (HERMeS data)

- **IR selected galaxies:**
 NEP-AKARI field, \(0<z<2\)

Buat et al. In prep (submitted end of nov)

Sendai-november 7th 2014
Definition of the 8 µm rest-frame selection in the NEP-AKARI deep field

PAH Feature @ 7.7 µm

• **S11** λ(cent) → z=0.38
 With trans > 0.8 (right) & 0.9 (left) 0.15<z<0.49

• **L15** λ(cent) → z=1.08
 With trans > 0.8 0.75<z<1.34

• **L18** λ(cent) → z=1.55
 With trans > 0.8 1.34<z<1.85

• **L24** λ(cent) → z=2
 With trans > 0.8 1.7<z<2.05

Similar selection as in Goto+10

Photo-z from Oi+14
AKARI sources from Murata+13
PACS data for 599 sources
Fitting the full SED with Cigale

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of dust attenuation $E(B-V)$</td>
<td>0.1-1 mag</td>
</tr>
<tr>
<td>Attenuation curve</td>
<td>B12,C00, SMC-like</td>
</tr>
<tr>
<td>IR templates, α</td>
<td>1-3</td>
</tr>
<tr>
<td>AGN fraction, frac_{AGN}</td>
<td>0-0.5</td>
</tr>
</tbody>
</table>

Stellar populations

- age (old stellar population) t_f: 2-11 Gyr
- e-folding rate (old stellar population) τ: 1-5 Gyr
- age (young stellar population) t_{ySP}: 50-500 Myr
- stellar mass fraction f_{ySP}: 0.01-0.2

Dale+14 templates
Fritz+06 templates

2 stellar populations

One output parameter: A_{UV}
Mainly constrained by $L_{\text{IR}}/L_{\text{UV}}$

Sendai-november 7th 2014
Examples of best fits

Best model for 61010841 at z = 1.1. Reduced $\chi^2 = 0.97$

- SFR = 89 +/- 13 M$_{\odot}$/yr
- $M_* = (4.2 +/- 1.2) \times 10^{10}$ M$_{\odot}$
- Type 2
- Frac(AGN) = 0.1

Best model for 61013396 at z = 0.3. Reduced $\chi^2 = 2.73$

- SFR = 3 +/- 0.6 M$_{\odot}$/yr
- $M_* = (8.5 +/- 3.8) \times 10^{9}$ M$_{\odot}$
- Type 2
- Frac(AGN) = 0.05

Best model for 61011647 at z = 0.7. Reduced $\chi^2 = 1.06$

- SFR = 75 +/- 10 M$_{\odot}$/yr
- $M_* = (8 +/- 4) \times 10^{10}$ M$_{\odot}$
- Type 1
- Frac(AGN) = 0.25

AGN contribution to L_{IR}

$<\text{AGN fraction}> = 0.08 \pm 0.08$

Sendai-november 7th 2014
Evolution of dust attenuation $A_{UV}(\text{@ 150 nm})$ with z

- Global attenuation from luminosity densities (Burgarella+13)
- Attenuation in IR selected galaxies ~2 mag higher than the average of the universe

Sendai-november 7th 2014
Evolution of dust attenuation with z

IR selected samples: this work and literature
Good agreement in the measurements:

\rightarrow Dust attenuation increases up to $z \sim 1$ and then remains \simconstant
Evolution of dust attenuation with z

IR selected samples (this work and literature):
Slight increase of the attenuation with redshift for galaxies producing the bulk of the IR energy (L_{IR}^* galaxies)

UV selected samples: much lower attenuation, similar to the global one measured with $\rho_{\text{IR}}/\rho_{\text{UV}}$

Sendai-november 7th 2014
Heinis+13

No trend of L_{IR}/L_{UV} with L_{UV}

→ The same average L_{IR}/L_{UV} is measured for any cut in L_{IR}

$\langle A_{UV} \rangle$ in a UV selection is similar to the average attenuation
Evolu
t
 "on
dust
a_enua
with
z
IR
selected
samples
(Slight
increase
of
the
attenuation
with
redshift
for
galaxies
producing
the
bulk
of
the
IR
energy
(L_{IR}^*\ galaxies)
UV
selected
samples:
much
lower
attenuation,
similar
to
the
global
one
measured
with
\rho_{IR}/\rho_{UV}
Sendai-november
7th
2014
Dust attenuation increases with M_* in a UV selected sample

Heinis+14
Evolv
do of dust attenuation with \(z \)

If we select galaxies with the same stellar mass as in the IR selection \(\rightarrow \) Similar attenuation

Sendai-november 7th 2014
Towards a consistent model?
Bernhard, Béthermin et al. 2014
For each M_{star} at any z

- $\text{SFR} = \text{SFR}(\text{IR}) + \text{SFR}(\text{UV})$
- $L_{\text{IR}}/L_{\text{UV}} = k_{\text{IR}} L_{\text{IR}} + K_{\text{UV}} L_{\text{UV}}$

$\rightarrow L_{\text{IR}}$ & L_{UV}
Evolution of dust attenuation with z

Model of Bernhard+14

#A_{UV}(mag) vs redshift

Sendai-november 7th 2014
To (quickly) conclude:

We have compared the evolution of dust attenuation globally in the universe, in UV and IR selected samples from z=0 to z~2

→ Dust attenuation is ~2 mag higher in IR selected galaxies than in average or in a UV selection
→ The stellar mass appears as the main driver for dust attenuation: universal relation between attenuation and stellar mass

IR selected galaxies, dominate the SFR density, they are massive galaxies & more attenuated than the average universe
UV selected galaxies exhibit a large range in stellar mass and exhibit an attenuation similar to that found in average for the universe

ありがとうございます

Sendai-november 7th 2014
Higher IR luminosities are reached when the stacking is performed by bins of M_*.

\Rightarrow M_* crucial parameter:

\Rightarrow Stacking per bin of (L_{FUV}, M_*)
• In a bin of L_{UV}: large range of M_*
• Dust attenuation increases with M_* for a given L_{FUV}
• Dust attenuation decreases with L_{FUV} for a given M_*