High-contrast imaging of exoplanets and disks with adaptive optics

Arthur Vigan

Laboratoire d'Astrophysique de Marseille (LAM) Centre National de la Recherche Scientifique (CNRS)

Direct imaging of circumstellar environments

Direct imaging of exoplanets

Physical units

Direct imaging of exoplanets

Observables

Direct imaging of exoplanets

Large ground-based telescopes

<0.1" angular resolution -> 8-10 m telescopes

LBT FLAO + PISCES , LMIRCAM

Subaru AO188, SCExAO + CIAO, HiCIAO, CHARIS

Magellan: MagAO + VisAO-CLIO

Gemini: ALTAIR-NIRI, NICI, GPI

Keck: NIRC2, NIRSPEC, OSIRIS

MMT MMT AO-2^{ndary} + ARIES, CLIO

Palomar PALAO/P3K + PHARO-P1640

VLT: NaCo, SINFONI, SPHERE

(Extreme) Adaptive optics systems

<0.1" angular resolution \rightarrow 8-10 m telescopes + AO

1990s

ESO3.6m/Come-On+ SHWFS; 62 actuators Sr < 10% (NIR)

Janson et al. 2007

2000s

VLT/NaCo SH WFS; 180 actuators Sr = 40-50% (NIR)

Neuhaüser et al. 2005

2010s LBT/SPHERE/GPI SH/Pyr WFS; 1200 actuators Sr > 80% (NIR) Sr = ~40% (VIS)

SPHERE consortium

Coronagraphy

Contrast > 10^4 at separation < $2" \rightarrow coronagraphs$

1980s

Las Campañas Obs. 7" mask VIS

1990s

3-5 m telescopes I" mask NIR detectors First AO systems

2000s

8-10 m telescopes <| mask NIR detectors Low order AO

2010s

8-10 m telescopes <0.1" mask NIR or VIS High-order AO

Arthur Vigan - AO4ASTRO - 2019-03-28

Real coronagraphy requires AO!

Real coronagraphy requires AO!

→ planetary orbital motion

Arthur Vigan - AO4ASTRO - 2019-03-28

Target selection

Sensitivity to planetary-mass

→ young nearby stars

- Identification of nearby young stars: ischrones, Li, H α , X-ray, kinematics, ...
 - **1980s:** TW Hydra (Rucinski & Krautter 1983)
 - **1990s:** Additional members of TW Hya assoc.
- 2000s: 10 new young associations
- 2010s: extension to low-mass stars, intermediate-old (<1 Gyr), more distant associations

Mixing ingredients: the direct imaging recipe

Seeing-limited PSF

X Adaptive opticsX Coronagraph

Diffraction-limited PSF ✓ Adaptive optics X Coronagraph

Diffraction-limited PSF ✓ Adaptive optics × Coronagraph

Coronagraphic image ✓ Adaptive optics ✓ Coronagraph

Census of direct imaging surveys

	Reference	Telescope	Instr.	Mode	Filter	FoV (as)	#	$_{\rm SpT}$	Age (Myr)	
	Nakajima+94 	Palomar	AOC	Cor-I	I-band	60	24	GKM	Field	-
	Chauvin+03	ESO3.6m	ADONIS	Cor-I	H, K	13	29	GKM	$\lesssim 50$	
	Neuhäuser+03	NTT	Sharp/Sofi	Sat-I	K/H	33	23/10	A–M	≈ 50	
	Lowrance+05	HST	NICMOS	Cor-I	H	19	$45^{'}$	A–M	10 - 600	
	Masciadri+05	VLT	NaCo	Sat-I	H, K	14	28	$\mathbf{K}\mathbf{M}$	$\lesssim 200$	
	Biller+07	VLT/MMT	NaCo/ARIES	SDI	H	5	45	GKM	$\lesssim 300$	
	Kasper+07	VLT	NaCo	Sat-I	L'	28	22	GKM	$\lesssim 50$	
	Lafrenière+07	Gemini-N	NIRI	Sat-ADI	H	22	85	FGK	10-5000	
	Apai+08	VLT	NaCo	SDI	H	3	8	\mathbf{FG}	12-500	
	Chauvin+10	VLT	NaCo	Cor-I	H, K	28	88	B-M	$\lesssim 100$	
	Heinze+10ab	MMT	Clio	Sat-ADI	L', M	15.5	54	FGK	100-5000	
	Janson+11	Gemini-N	NIRI	Sat-ADI	H, K	22	15	BA	20-700	
	Vigan+12	Gemini-N/VLT	NIRI	Sat-ADI	H, K	22/14	42	\mathbf{AF}	10-400	
	Delorme+12	VLT	NaCo	Sat-ADI	L'	28	16	Μ	$\lesssim 200$	
	Rameau+13c	VLT	NaCo	Sat-ADI	L'	28	59	\mathbf{AF}	$\lesssim 200$	
	Yamamoto+13	Subaru	HiCIAO	Sat-ADI	H, K	20	20	\mathbf{FG}	125 ± 8	
	Biller+13	Gemini-S	NICI	Cor-ASDI	$H^{'}$	18	80	B-M	$\lesssim 200$	
	Nielsen+13	Gemini-S	NICI	Cor-ASDI	H	18	70	BA	50-500	
	Wahhaj+13	Gemini-S	NICI	Cor-ASDI	H	18	57	A-M	~ 100	
	Janson+13	Subaru	HiCIAO	Sat-ADI	H	20	50	A-M	$\lesssim 1000$	
	Brandt+14	Subaru	HiCIAO	Sat-ADI	H	20	63	A-M	$\lesssim 500$	
	Chauvin+15	VLT	NaCo	Sat-ADI	H	14	86	FGK	$\lesssim 200$	
	Meshkat+15ab	VLT	NaCo	APP-ADI	L'	28	20	\mathbf{AF}	$\lesssim 200$	
	Bowler+15	Keck/Subaru	NIRC2/HiCIAO	Cor-ADI	H	10/20	78	Μ	$\lesssim 200$	
	Galicher+16	Keck	NIRC2	Cor-ADI	H, K	10	229	A-M	$\lesssim 200$	
		Gemini-N/S	NIRI/NICI							
	Durkan+16	Spitzer	IRAĊ	Ι	$4.5\mu{ m m}$	312	73	A-M	$\lesssim 200$	_
GPIES	Macintosh et al.	Gemini-S	GPI	ALC-ASDI	ЈНК	3.5	600	A-M	1 - 1000	started in 2014
SHINE	Chauvin et al.	VLT	SPHERE	ALC-ASDI	JHK	10	600	A-M	1 - 1000	started in 2015

Gl229 B discovery (Nakajima et al. 1995)

First imaged substellar companion

- Palomar AOC camera: image stabilizer + coronograph
- First T-dwarf discovery with strong CH4 absorptions

T. Nakajima and S. Kulkarni (CalTech), S. Durrance and D. Golimowski (JHU), NASA

Followed by many on wide orbits (>100 au)

- DH Tau b (Itoh et al. 05)
- AB Pic b (Chauvin et al. 05)
- CHXR73 b (Luhman et al. 05)
- GQ Lup b (Neuhauser et al. 05)
- RXJ1609 b (Lafrenière et al. 08)
- ...
- HD106906 b (Su et al. 2013)
- HD203030 b (Miles-Paez et al. 2017)

• ...

20 AU

2M1207 b (Chauvin et al. 2004)

First exoplanet imagers detections

- *51 Eri b:* GPI, T3 dwarf with CH4
- HIP 65426 b: SPHERE, L7 dusty dwarf
- PDS 70 b: SPHERE, L dusty dwarf, transition disk

HR8799 bcd, Fomalhaut b, β Pic b HR8799 e, HD95086 b, GJ504 b (Marois+ 2010; Rameau+ 2013; Kuzuhara+ 2013)

> **51 Eri b, HIP65426 b, PDS 70 b** (Macintosh+ 201; Chauvin+ 2017 Keppler+ 2018)

Science with direct imaging

1/ Physics of giant exoplanets

Photometry & Spectroscopy

Atmosphere & physical properties

2/ Architecture & stability of planetary systems

Astrometry & disk/planet position

Orbits, dynamical interactions, resonances & long-term evolution

3/ Occurrence & formation

Statistical properties (occurrence, stellar host dependency, disk properties) Formation theories

Planetary formation in real-time

Detection of fine structures in circumstellaire disks: spirals, gaps, rings, ...

SAO 206462 Herbig Ae/Be star, ~9 Myr SPHERE/IRDIS RDI Maire et al. (2017)

TW Hya T Tauri K6Vs star, TWA, 8 Myr SPHERE/IRDIS DPI Van Boekel et al. (2016)

HR4796 AOV star, TWA, 8 Myr **GPI H-band ADI** Perrin et al. (2014)

Candidate embedded proto-planets: importance of gas accretion

Reggiani et al. (2014)

First confirmed proto-planet!

PDS70; SPHERE Keppler et al. (2018)

Study of planetary systems

Planets and multi-belt architectures

HD95086

A8, ScoCen, 17 Myr, 83.8pc Warm, inner belt: 7-10 au, 175K (SED) Cold, outer belt: 106-320 au, 55K

HR8799

A5, Colunba, 30 Myr, 39.4pc Warm, inner belt: 6-16 au, 150K (SED) Cold, outer belt: 145-425 au, 45K

Booth et al. (2016)

Study of planetary systems

Planets and multi-belt architectures

HD95086

A8, ScoCen, 17 Myr, 83.8pc Warm, inner belt: 7-10 au, 175K (SED) Cold, outer belt: 106-320 au, 55K

HR8799

A5, Colunba, 30 Myr, 39.4pc Warm, inner belt: 6-16 au, 150K (SED) Cold, outer belt: 145-425 au, 45K

Rameau et al. (2013)

Marois et al. (2008, 2018)

Study of planetary systems

Planets and multi-belt architectures

HD95086

A8, ScoCen, 17 Myr, 83.8pc Warm, inner belt: 7-10 au, 175K (SED) Cold, outer belt: 106-320 au, 55K

HR8799

A5, Colunba, 30 Myr, 39.4pc Warm, inner belt: 6-16 au, 150K (SED) Cold, outer belt: 145-425 au, 45K

Architecture of planetary systems, dynamical stability, migration/ejection...

Physics of giant exoplanets

Measuring the photons from the planets: physics of their atmospheres

• temperature

• clouds

• gravity

• non-equilibrium chemistry

Physics of giant exoplanets

Measuring the photons from the planets: physics of their atmospheres

• temperature

• clouds

• gravity

• non-equilibrium chemistry

Rameau et al., GPIES collaboration

CH₄ CO

HD984B

(2730 K)

β Pictorisb

HD206893B (1600 K)

HR2562B

(1200 K)

HR8799c (1200 K)

HR8799d (1200 K)

HR8799e

(1200 K)

HD95086b

(1000 K)

51Erib (670 K)

2.2 2.4

(1720 K)

PZTelB (2700 K)

Occurence and formation of giant planets

How frequent are giant gaseous exoplanets?

28

Occurence and formation of giant planets

Can we infer what is the most common formation scenario from observations?

→ core-accretion (CA) vs. gravitationnel instability (GI) vs. gravo-turbulent fragmentation

NaCo-LP - Vigan et al. (2017) **SHINE** - Vigan et al. (in prep.)

• GI not dominant process based on current data

- Arthur Vigan AO4ASTRO 2019-03-28
- CA population difficult to probe, even with SPHERE/GPI²⁹

What are our limitations today?

Expected vs. observed contrast performance

Exoplanet sensitivity

- Higher-order, faster AO
- Visible AO for detection of $H\alpha$ emission
- Image reconstruction from AO telemetry
- Improved NCPA control
- Higher spectral resolution

Vigan et al. (in prep.) Cantalloube et al. (in prep.)

Bailey et al. (2016)

- Wind-driven halo often dominates at 1 kHz: $\tau_0 \lesssim 1$ ms
- Not major issue for point-sources → filtering + ADI
- Major issue for disks!

- Higher-order, faster AO
- Visible AO for detection of $H\alpha$ emission
- Image reconstruction from AO telemetry

• Improved NCPA control

• Higher spectral resolution

• Higher-order, faster AO

Log L/L_o

-6

-8

- Visible AO for detection of $H\alpha$ emission
- Image reconstruction from AO telemetry

- Improved NCPA control
- Higher spectral resolution

- Higher-order, faster AO
- Visible AO for detection of $H\alpha$ emission
- Image reconstruction from AO telemetry

- Improved NCPA control
- Higher spectral resolution

- Higher-order, faster AO
- Visible AO for detection of $H\alpha$ emission
- Image reconstruction from AO telemetry

- Improved NCPA control
- Higher spectral resolution

- Possibly improved characterization
- Detection boost for medium and high-resolution
- New science from RV information: rotation speed, orbital motion
- Possible detection of unseen companions (Gaia, RV) or confirmation of candidates

Arthur Vigan - AO4ASTRO - 2019-03-28

Conclusions: *a bright future for imaging!*

- Tremendous progress in 20 years with (Ex)AO and coronagraphy
- New generation of instruments can really help to address many science cases:
 - Atmospheric physics & chemistry, formation, occurence
- Synergies with other methods pave the way for the next 20 years!

