Arthur Vigan

Laboratoire d'Astrophysique de Marseille (LAM) Centre National de la Recherche Scientifique (CNRS)

SHINE The SPHERE infrared survey for exoplanets

SPHERE

J.-L. Beuzit (PI), M. Feldt (Co-PI), D. Mouillet (PS), P. Puget (PM), K. Dohlen (SE), F. Wildi (AIT), T. Fusco (AO), M. Kasper (ESO responsible), Z. Wahhaj (current ESO IS) and numerous participants from 12 European institutes!

SHINE

G. Chauvin (SHINE coordinator), S. Desidera (SHINE+WP1 coordinator), A.Cheetham (WP1),
 A.-M. Lagrange (WP2 coordinator), R. Gratton (WP2), M. Langlois (WP2), A. Vigan (WP3 coordinator), M. Bonnefoy (WP3), M. Feldt (WP4 coordinator), M. Meyer (WP4) and numerous participants from 12 European institutes!

Context

Imaging of low-mass companions

Imaging of low-mass companions

Imaging of low-mass companions

Why do imaging?

- sensitive to all spatial components: planets, disk
- direct access to:
 - architecture of systems
 - flux vs. wavelength (total and/or polarised)
- complementary with other methods:
 - mass, semi-major axis & age

Two major difficulties

High-angular resolution

High-contrast

Burrows et al. (1997)

Two major difficulties

High-angular resolution

High-contrast

Need for dedicated, optimised instrumentation!

SPHERE

Where it all started

SPHERE system overview

Implementation

2011-2013: integration in Europe

SPHERE completed in 2013

2014: shipment and reintegration

May 2015 @ UT3

1-9-0-

May 6th 2014: first light

May 6th 2014: first light

SPHERE asset #1: SAXO

Spatially-filtered Shack-Hartmann for anti-aliasing

Arthur Viga

SPHERE asset #2: science instruments

	ZIMPOL	IRDIS	IFS
FoV	3.5"		I.77"
Spectral range	0.5-0.9 μm	0.95-2.30 μm	0.95-1.35 / 1.65 µm
Spectral information	BB, NB filters	BB, NB filters slit spectro @ R = 50/400	R = 50 / 30
Linear polarisation	Simultaneous	Simultaneous (dual- beam)	
Nyquist sampling	@ 0.6 µm	@ 0.95 μm	@ 0.95 μm

Arthur Vigan - Exeter - 20

SPHERE asset #2: science instruments

	ZIMPOL	IRDIS	IFS
FoV	3.5"	11"	I.77"
Spectral range	0.5-0.9 μm	0.95-2.30 μm	0.95-1.35 / 1.65 μm
Spectral information	BB, NB filters	BB, NB filters slit spectro @ R = 50/400	R = 50 / 30
Linear polarisation	Simultaneous	Simultaneous (dual- beam)	
Nyquist sampling	@ 0.6 µm	@ 0.95 μm	@ 0.95 µm

Arthur Vigan - Exeter - 20

IRDIFS: the exoplanet hunting mode

IRDIS

IFS

- SPHERE designed to be a **survey instrument**
- "near-infrared survey" observing mode
 IRDIFS: IFS in YJ + IRDIS in H
 IRDIFS_EXT: IFS in YJH + IRDIS in K_s
- extremely efficient for planet hunting

Early SPHERE results: the HR8799 system

- First spectra for HR8799 c, d
- Spectral types ~L6-L8
- Redder colors than field BD and models
- Reddening well reproduced by submicron grains made of corundum, iron, enstatite, or forsterite

SHINE

SHINE: SpHere Infrared survey for Exoplanets

200 nights of VLT/SPHERE over 5 years

(wlm)

б

10

flux at

2.5

2.0

1.5

1.0

0.5

1.4

1.6

1/ Physics of giant exoplanets Photometry & Spectroscopy Atmosphere & physical properties

2/ Architecture & stability of planetary systems Astrometry & Disk/Planet relative position Orbits, dynamical interactions, resonances & long-term evolution

3/ Occurrence & formation Statistical properties (occurrence, planetary host dependency, disk properties) Formation Theories: CA, GI or CF

Arthur Vigan - Exeter - 2017-12-13

1.8

2.0

wavelength (μm)

2.4

2.6

2.2

SHINE organisation

G. Chauvin, S. Desidera

WP2. Observations and data reduction Scheduling, pipeline, analysis, data center

Target database

WP4. Statistics

Statistical tools, link to formation theories

WP1. Input catalog

Properties, priorities

WP3. Characterisation

Candidates identification & classification, companion characterisation

A. Vigan M. Bonnefoy

A.-M. Lagrange

R. Gratton

M. Langlois

M. Feldt M. Meyer

Sample

600 stars + 400 backup, 4 priority bins

R<11 No binaries (spectro or visual <6")

Observations

- 200 nights over 2015-2019
 - ~135 already done (68%)
- GTO done in Visitor Mode
 - usually two visitors
- Statistics:
 - 25% bad weather loss
 - 5% technical loss
- ~500 individual observations
 - ~400 validated
- Strategy:
 - IRDIFS or IRDIFS-EXT
 - ADI
 - ~1.5 hour/target
- scheduling tool (SPOT) to optimise the survey on the long-term

Data analysis

- SPHERE Data Center in grenoble:
 - almost fully automated pre-processing pipeline
 - SpeCal pipeline for ADI-processing (Galicher et al. in prep): TLOCI, PCA, cADI, RDI
 - Candidates astrophotometry derived after eye identification
- Observation manually validated by 2 people
- Data Reduction Teams on call during all observing run

The candidates nightmare

Besançon models, 13" FoV, H-band (Chauvin et al. 2015)

- contamination by remote background stars
- probability
 - increases with FoV²
 - 5% for IFS
 - 40-50% for IRDIS

The candidates nightmare

Arthur Vigan - E

The candidates nightmare

Individuals targets

Reducing candidates: proper motion

Reducing candidates: proper motion

Reducing candidates: color-mag diagrams

IRDIFS

IRDIFS-EXT

Reducing candidates: color-mag diagrams

Reducing candidates: color-mag diagrams

The candidates nightmare

Individuals targets

The candidates nightmare very bad dream

Individuals targets

The (real) SPHERE planet: HIP 65426 b

HIP 65426

A2V, 111.4pc LCC member, 14 Myr, No IR excess Fast-rotator (300 m/s)

Observations IRDIFS + IRDIFS-EXT 2016-06-26

2016-06-26 2017-02-09

HIP 65426 b

Sep. = 830 mas / 92 AU Δ H2 = 11 ± 0.1 mag Mass = 6-12 M_{Jup} Teff = 1300 - 1600 K R = 1.5 ± 0.1 R_{Jup}

HIP65426b

1.6

Wavelength [µm]

H2 H3

K1

H₂O

BT-SETTL (T_{eff}=1650K, logg=4.5, M/H=0, R=1R_{.kup})

2.0

1.8

K2

2.2

What is the frequency of young giant exoplanets on wide orbit?

What is the frequency of young giant exoplanets on wide orbit?

Reference	Telescope	Instr.	Mode	Filter	FoV (''×'')	#	SpT	Age (Myr)
Chauvin et al. (2003)	ESO3.6m	ADONIS	Cor-I	H, K	13×13	29	GKM	≲50
Neuhäuser et al. (2003)	NTT	Sharp	Sat-I	K	11×11	23	AFGKM	≲50
	NTT	Sofi	Sat-I	H	13×13	10	AFGKM	≲50
Lowrance et al. (2005)	HST	NICMOS	Cor-I	H	19 × 19	45	AFGKM	10-600
Masciadri et al. (2005)	VLT	NaCo	Sat-I	H, K	14×14	28	KM	≲200
Biller et al. (2007)	VLT	NaCo	SDI	H	5×5	45	GKM	≲300
	MMT		SDI	H	5×5	_	_	_
Kasper et al. (2007)	VLT	NaCo	Sat-I	L'	28×28	22	GKM	≲50
Lafrenière et al. (2007)	Gemini-N	NIRI	ADI	H	22×22	85		10-5000
Apai et al. (2008) ^{<i>a</i>}	VLT	NaCo	SDI	H	3×3	8	FG	12-500
Chauvin et al. (2010)	VLT	NaCo	Cor-I	H, K	28×28	88	BAFGKM	≲100
Heinze et al. (2010a,b)	MMT	Clio	ADI	L', M	15.5×12.4	54	FGK	100-5000
Janson et al. (2011)	Gemini-N	NIRI	ADI	H, K	22×22	15	BA	20-700
Vigan et al. (2012)	Gemini-N	NIRI	ADI	H, K	22×22	42	AF	10-400
	VLT	NaCo	ADI	H, K	14×14	_	_	_
Delorme et al. (2012)	VLT	NaCo	ADI	L'	28×28	16	Μ	≲200
Rameau et al. (2013c)	VLT	NaCo	ADI	L'	28×28	59	AF	≲200
Yamamoto et al. (2013)	Subaru	HiCIAO	ADI	H, K	20×20	20	FG	125 ± 8
Biller et al. (2013)	Gemini-S	NICI	Cor-ASDI	H	18×18	80	BAFGKM	≲200
Brandt et al. (2013)	Subaru	HiCIAO	ADI	H	20×20	63	AFGKM	≲500
Nielsen et al. (2013)	Gemini-S	NICI	Cor-ASDI	H	18×18	70	BA	50-500
Wahhaj et al. $(2013)^a$	Gemini-S	NICI	Cor-ASDI	Η	18×18	57	AFGKM	~100
Janson et al. $(2013)^a$	Subaru	HiCIAO	ADI	Η	20×20	50	AFGKM	≲1000

+ Galicher et al. (2016), Vigan et al. (2017), Meshkat et al. (2016, 2017), Durkan et al. (2016), ...

What is the frequency of young giant exoplanets on wide orbit?

Reference	Telescope	Instr.	Mode	Filter	FoV ("×")	#	SpT	Age (Myr)
Chauvin et al. (2003)	ESO3.6m	ADONIS	Cor-I	H, K	13 × 13	29	GKM	≲50
Neuhäuser et al. (2003)	NTT	Sharp	Sat-I	K	11 × 11	23	AFGKM	≲50
	NTT	Sofi	Sat-I	H	13×13	10	AFGKM	≲50
Lowrance et al. (2005)	HST	NICMOS	Cor-I	H	19 × 19	45	AFGKM	10-600
Masciadri et al. (2005)	VLT	NaCo	Sat-I	H, K	14×14	28	KM	≲200
Biller et al. (2007)	VLT	NaCo	SDI	H	5×5	45	GKM	≲300
	MMT		SDI	H	5×5	-	-	_
Kasper et al. (2007)	VLT	NaCo	Sat-I	L'	28×28	22	GKM	≲50
Lafrenière et al. (2007)	Gemini-N	NIRI	ADI	H	22×22	85		10-5000
Apai et al. (2008) ^{<i>a</i>}	VLT	NaCo	SDI	H	3 × 3	8	FG	12–500
Chauvin et al. (2010)	VLT	NaCo	Cor-I	H, K	28×28	88	BAFGKM	≲100
Heinze et al. (2010a,b)	MMT	Clio	ADI	L', M	15.5×12.4	54	FGK	100-5000
Janson et al. (2011)	Gemini-N	NIRI	ADI	H, K	22×22	15	BA	20–700
Vigan et al. (2012)	Gemini-N	NIRI	ADI	H, K	22×22	42	AF	10-400
	VLT	NaCo	ADI	H, K	14×14	-	-	_
Delorme et al. (2012)	VLT	NaCo	ADI	L'	28×28	16	Μ	≲200
Rameau et al. (2013c)	VLT	NaCo	ADI	L'	28×28	59	AF	≲200
Yamamoto et al. (2013)	Subaru	HiCIAO	ADI	H, K	20×20	20	FG	125 ± 8
Biller et al. (2013)	Gemini-S	NICI	Cor-ASDI	H	18×18	80	BAFGKM	≲200
Brandt et al. (2013)	Subaru	HiCIAO	ADI	H	20×20	63	AFGKM	≲500
Nielsen et al. (2013)	Gemini-S	NICI	Cor-ASDI	H	18×18	70	BA	50-500
Wahhaj et al. $(2013)^a$	Gemini-S	NICI	Cor-ASDI	H	18×18	57	AFGKM	~100
Janson et al. $(2013)^a$	Subaru	HiCIAO	ADI	Н	20×20	50	AFGKM	≲1000

+ Galicher et al. (2016), Vigan et al. (2017), Meshkat et al. (2016, 2017), Durkan et al. (2016), ...

What is the frequency of young giant exoplanets on wide orbit?

What is the frequency of young giant exoplanets on wide orbit?

Occurence rate from SHINE

IFS only!

~150 stars, all spectral types

Vigan et al. (in prep)

Detection probability from SHINE

IFS only!

~150 stars, all spectral types

Vigan et al. (in prep)

Link to formation models

Can direct imaging observations constrain formation models?

Core Accretion Pollack et al. 1994

Gravitational Instability Cameron 1978

Gravo-turbulent fragmentation Hennebelel & Chabrier 2011

Link to formation models: NaCo-LP

- NaCo-LP: 200 FGK stars, 3 detections
- Comparison to population synthesis models by Forgan et al. → gravitational instability

Link to formation models: NaCo-LP

- NaCo-LP: 200 FGK stars, 3 detections
- Comparison to population synthesis models by Forgan et al. → gravitational instability

→ low occurence rate with or without scattering: <5-6%

Link to formation models: NaCo-LP

- NaCo-LP: 200 FGK stars, 3 detections
- Comparison to population synthesis models by Forgan et al. -> gravitational instability

- GI not dominant!
- CA accretion not accessible
- Alternatives?
 - multi fragmentation GI
 - pebble accretion
 - dynamical evolution

Link to formation models: SHINE

Gravitational instability

- State-of-the-art GI models by Forgan et al.
- Solar-type stars
- Semi-analytical scattering with systems up to 5 planets

Arthur Vigan - Exeter - 2017-12-13

Vigan et al. (in prep)

Link to formation models: SHINE

Core accretion

- State-of-the-art CA models by Mordasini et al.
- 0.5, 1.0, 2.0 M_{Sun}
- 10 embryos/disk, evolution from 0 to 1 Gyr

Link to formation models: SHINE

Core accretion

- State-of-the-art CA models by Mordasini et al.
- 0.5, 1.0, 2.0 M_{Sun}
- 10 embryos/disk, evolution from 0 to 1 Gyr

Future

2 main directions

1. More planets!!

2 main directions

1. More planets!!

2. Improved characterization

More planets: closer, deeper

More planets: closer, deeper

More planets: closer, deeper

Current limitations

ZELDA: Zernike wavefront sensor

ZELDA

Zernike sensor for Extremely accurate measurements of Low-level Differential Aberrations

- Original measurement strategies:
 - VLT/SPHERE: off-line phase diversity
 - GPI: Mach-Zehnder interferometer behind coronagraph

- Our proposal:
 - ZELDA a concept based on phase-contrast technique

ZELDA: Zernike wavefront sensor

- Conversion of the phase aberrations into intensity variations
 - Ic=a sin ϕ + β
 - Small aberrations: Ic = $a\phi + \beta$

ZELDA in SPHERE

NCPA compensation in SPHERE

150

100

50

0

-50

-100

-150

Phase errors [nm]

45 nm RMS

30 nm RMS

45 nm RMS

Apodised pupil Lyot coronagraph, H-band

Apodised pupil Lyot coronagraph, H-band

Arthur Vigan - Exeter - 2017-12-13

ZELDA now used to monitor NCPA in SPHERE

→ ZELDA now used to monitor NCPA in SPHERE

More planets: closer, deeper

Arthur Vigan - Exeter - 2017-12-13

More planets: closer, deeper

Improved characterization

Very high spectral resolution

Arthur Vigan - Exeter - 2017-12-13

Very high spectral resolution

A unique window of opportunity

High-contrast exoplanet imager

.

.

Extreme adaptive optic	S	
Coronagraphy		
YJHK Spectral coverage	Y J H	KLM
50 - 350 Spectral resolution	50 000 -	100 000

A unique window of opportunity

High-contrast exoplanet imager

High-resolution spectrograph

erc

Arthur Vigan - Exeter - 2017-12-13

erc

Preliminary simulations

- BT-NextGen model for the star •
- BT-Settl model for the planet
- Magnitudes from the literature

• Texp = 1 hr	SPHERE	15 %
• R=10 ⁵	Injection	70 %
 no spectral binning 	Fiber	99 %
 Realistic values for transmission 	CRIRES+	15 %

Transmission

A prototype fiber injection in SPHERE

Fiber entrance

already available

in CRIRES+

erc

A prototype fiber injection in SPHERE

SPHERE near-infrared arm

CRIRES+ calibration unit stage

Starting now Stay tuned for results!

Fiber entrance already available in CRIRES+

erc

Arthur Vigan - Exeter - 2017-12-13

Fiber link

Other updates

- Many other ideas in the pipeline
- Adaptive optics:
 - NCPA correction
 - faster turbulence correction: factor 2 to 4 increase
 - infrared pyramid WFS
 - improved predictive control
- Coronagraphy:
 - better IWA: vortex? other?
- Science:

• ...

- HRS coupling in NIR with CRIRES+ or dedicated spectro
- HRS coupling in VIS with ESPRESSO
- new ZIMPOL optimised for fainter targets?

Other updates

- Many other ideas in the pipeline
- Adaptive optics:
 - NCPA correction
 - faster turbulence correction: factor 2 to 4 increase
 - infrared pyramid WFS
 - improved predictive control
- Coronagraphy:
 - better IWA: vortex? other?
- Science:

• ...

- HRS coupling in NIR with CRIRES+ or dedicated spectro
- HRS coupling in VIS with ESPRESSO
- new ZIMPOL optimised for fainter targets?

Upgrade path under study. Again, stay tuned...

Conclusions

Conclusions

1. SPHERE

- powerful and versatile instrument
- benefit from a great ExAO system and 3 complementary science instruments

2. SHINE

- 400-600 stars survey over 5 years
- 2/3 of the survey done, 1 planet
- many, many, many disk results + some companions characterisation

3. SPHERE upgrades

- NCPA calibration and compensation with ZELDA
- HRS coupling with CRIRES+
- many other upgrades in the pipeline, include AO