Direct Imaging of Exoplanets with VLT/SPHERE

Arthur Vigan

European Southern Observatory, Chile Laboratoire d'Astrophysique de Marseille, France

12 European institutes

Credits for the SPHERE project

- PI: Jean-Luc Beuzit, Markus Feldt
- Instrument Scientist: David Mouillet

LAM 🐋

- GTO coordinator: Gaël Chauvin
- CoIs:

Aix+Marseille

- Anthony Boccaletti (LESIA)
- François Ménard (IPAG)
- Carsten Dominik (UvA)
- Thomas Henning (MPIA)
- Claire Moutou (LAM)
- Hans-Martin Schmid (ETHZ)
- Massimo Turrato (INAF)
- Stéphane Udry (Geneva Obs.)
- Farrhok Vakhili (Lagrange)
- Sub-system scientists:
 - IRDIS: Maud Langlois/Arthur Vigan
 - IFS: Raffaele Gratton
 - ZIMPOL: Hans-Martin Schmid
 - AO: Thierry Fusco
- +200 people in engineering, admin, astro, etc

- strong ESO team supporting the operations:
 - IS: Julien Girard
 - Deputy IS: Zahed Wahhaj & Arthur Vigan
 - Instrument fellow: Julien Milli

Outline

Aix*Marseille Con

- Direct imaging in context
- Techniques for high-contrast imaging

LAM >>

- A new generation of instruments
- First results with SPHERE

Introduction

A multi-facet story

- stellar formation
- formation and physics of exoplanets
- architecture and evolution
- favorable conditions for life
- exo-biology and bio-signatures

Artist view of planet formation

Direct imaging: context

LAM

Aix+Marseille

- Transmission & emission spectro
 - composition
 - vertical T-P structure
 - atmospheric circulation
 - evaporation

- Indirect methods
 - Radial Velocity
 - Microlensing
 - Astrometry
 - Transitdirect
- Orbital and physical properties:
 - most orbital parameters
 - system architecture & stability
 - planetary interiors
- Statistics
 - >1000 confirmed planets
 + 1000s Kepler candidates
 - frequency down to super-Earths
 - mass/orbit distributions
 - stellar host dependence (Fe/H; SpT; binarity; etc)

Direct imaging: context

Aix*Marseille

- Direct imaging measures photons from the planet
- Orbital and physical properties:
 - L, a, e, i, ω, t0
 - giant planets >I M_{Jup} at wide-orbit >5 AU
 - system architecture & stability
 - planet-disk interactions
- Spectroscopy:
 - composition
 - cool, non-irradiated atmospheres
 - low gravity, non-LTE, clouds, ...

Chauvin et al. (2004); Lafrenière et al. (2007); Janson et al. (2010); Skemer et al. (2012); Mouillet et al. (1997); Lagrange et al. (2012); Kalas et al. (2004) ...

Observational challenge

Aix*Marseille

Direct imaging has to overcome 2 difficulties

Direct Imaging of Exoplanets w

Observational challenge

LAM

Aix*Marseille

High-angular resolution

LAM 😒

- Need for large telescopes at the diffraction limit
 - space

Aix+Marseille

ground-based + AO

9

High-angular resolution: adaptive optics

- **Measure** the atmospheric turbulence using a wavefront sensor
- Correct it using a deformable mirror

LAM

- Correction limited by number of actuators and frequency of correction
- Different generations of systems:

1990s

Aix Marseille

 ESO3.6m/Come-On+
 VLT/NaCo

 SH WFS; 52 actuators
 SH WFS; 18

 Sr < 10%</td>
 Sr = 40-509

2000s VLT/NaCo SH WFS; 180 actuators Sr = 40-50%

2010s LBT/SPHERE/GPI SH/Pyr WFS; >1000 actuators Sr > 80%

Adaptive optics in action

High-contrast

Aix+Marseille

Sensitivity limited by the star/planet luminosity difference

• long integration times

LAM

- Advantages:
 - ?
- Drawbacks:
 - extremely long integration times
 - limited by detector overheads
 - ultimately limited by diffraction

High-contrast

Aix Marseille

Sensitivity limited by the star/planet luminosity difference

- long integration times
- saturated imaging

- Advantages:
 - increased sensitivity in PSF wings
 - improved SNR
- Drawbacks:
 - loss of angular resolution
 - remanence effects on detectors
 - ultimately limited by diffraction

High-contrast

LAM

Aix*Marseille Con

Sensitivity limited by the star/planet luminosity difference

- long integration times
- saturated imaging
- coronagraphy

- Advantages:
 - suppress diffraction
 - improved SNR
- Drawbacks:
 - possible loss of angular resolution
 - increased system complexity
 - high Strehl ratio required

High-contrast: coronagraphy

- Proposed in 1930 by Bernard Lyot to observe the solar corona
- Generalized to point like sources
- Very active field of research

Aix+Marseille

Quasi-static speckles

Aix+Marseille

- high-angular resolution + high-contrast -> not enough!
 - limitations: atmospheric and instrumental speckles
 - speckles are **not static**, but definitely **not random**
- optimized observing strategy, data analysis and target selection

Racine et al. (1999) Macintosh et al. (2005) Soummer et al. (2007) Hinkley et al. (2007)

Direct Imaging of Exoplanets with VLT/SPHERE

Arthur Vigan 22/09/2014

Spectral differential imaging

- Based on expected spectral features of the planets vs. flat stellar spectrum
- CH₄ / H₂O absorptions expected for cold, lowmass planets

- Caveat: known cold objects don't show CH4 abs.
 - HR8799b and 2M 1207b

Aix*Marseille

- unexpected role of CO/CH₄ non-equ. chemistry
- except 51 Eridani b (see later)

Barman et al. (2011); Konopacky et al. (2012); ...

Spectral + angular differiential imaging

Aix Marseille Cr

LAM 🗲

Target selection

Aix+Marseille

- high-angular resolution + high-contrast + obs. strategy + data analysis
 increased sensitivity at small separation (0.1"-0.2")
- what about physical units: semi-major axis [AU] and mass [Mjup]?

→ significant role of target selection

Target selection

Aix*Marseille

- several criteria for target selection
 - distance → closer is better
 - 0.1" = 10 AU @ 100 pc
 - age → younger is better
 - nearby young associations and moving groups identified since the 1990s
 - ~300 known young (<300 Myr) nearby (<100 pc) stars
 - **stellar mass** → more massive is better??
 - indications of stellar mass / planet mass correlation (e.g. Johnson et al. 2010)
 - IR excess → presence of disk

Shkolnik et al. (2012)

Direct imaging surveys

Aix*Marseille Cons

Census of all published direct imaging surveys:

Reference	Telescope	Instr.	Mode	Filter	FoV ("×")	#	$_{\rm SpT}$	Age (Myr)
Chauvin et al. 2003	ESO3.6m	ADONIS	Cor-I	H,K	13×13	29	GKM	≤ 50
Neuhäuser et al. 2003	\mathbf{NTT}	Sharp	Sat-I	K	11×11	23	AFGKM	≤ 50
	NTT	Sofi	Sat-I	H	13×13	10	AFGKM	≤ 50
Lowrance et al. 2005	HST	NICMOS	Cor-I	H	19×19	45	AFGKM	10 - 600
Masciadri et al. 2005	VLT	NaCo	Sat-I	H,K	14×14	28	KM	≤ 200
Biller et al. 2007	VLT	NaCo	SDI	H	5×5	45	GKM	≤ 300
	MMT		SDI	H	5×5	-	-	-
Kasper et al. 2007	VLT	NaCo	Sat-I	L'	28×28	22	GKM	≤ 50
Lafrenière et al. 2007	Gemini-N	NIRI	ADI	H	22×22	85		10-5000
Apai et al. 2008^a	VLT	NaCo	SDI	H	3×3	8	\mathbf{FG}	12 - 500
Chauvin et al. 2010	VLT	NaCo	Cor-I	H, K	28×28	88	BAFGKM	≤ 100
Heinze et al. 2010ab	MMT	Clio	ADI	L', M	15.5×12.4	54	FGK	100-5000
Janson et al. 2011	Gemini-N	NIRI	ADI	H,K	22×22	15	BA	20-700
Vigan et al. 2012	Gemini-N	NIRI	ADI	H, K	22×22	42	\mathbf{AF}	10-400
	VLT	NaCo	ADI	H, K	14×14	-	-	-
Delorme et al. 2012	VLT	NaCo	ADI	L'	28×28	16	Μ	≤ 200
Rameau et al. 2013c	VLT	NaCo	ADI	L'	28 imes 28	59	\mathbf{AF}	≤ 200
Yamamoto et al. 2013	Subaru	HiCIAO	ADI	H, K	20 imes 20	20	\mathbf{FG}	125 ± 8
Biller et al. 2013	Gemini-S	NICI	Cor-ASDI	$H^{'}$	18×18	80	BAFGKM	≤ 200
Brandt et al. 2013^b	Subaru	HiCIAO	ADI	H	20 imes 20	63	AFGKM	< 500
Nielsen et al. 2013	Gemini-S	NICI	Cor-ASDI	H	18×18	70	BA	$\overline{50}$ -500
Wahhaj et al. 2013^a	Gemini-S	NICI	Cor-ASDI	H	18×18	57	AFGKM	~ 100
Janson et al. 2013^a	Subaru	HiCIAO	ADI	H	20×20	50	AFGKM	≤ 1000
Chauvin et al. 2014 V	/LT Na	Co ADI	Н	14 x 14	4 80 FGI	K	< 300	

Family portrait of directly imaged companions

Close(r) orbit

Aix+Marseille

LAM 😒

- A4V-A5V massive primaries
- q = 0.5%; a < 120 AU
- disk signatures

Last 10 years: major progress in 3 areas

1/ Physics of Giant Planets Photometry & Spectroscopy Atmosphere & physical properties

Aix*Marseille C

2/ Architecture & Stability Astrometry & Disk/Planet relative position Orbits, dynamical interactions, resonances & long-term evolution

3/ Occurrence & Formation

Statistical properties (occurrence, planetary host dependency, disk properties) Formation Theories: CA, GI or CF • What was missing?

Arthur Vigan 22/09/2014

New generation of instruments

• What do we want?

Aix+Marseille

- get closer in separation
- reach higher contrast
- get spectral information

high-order AO correction at fast rate

Two new instruments

Aix+Marseille

Gemini Planet Imager - GPI Gemini South North-American consortium PI: Bruce Macintosh

Spectro-Polarimetric High-contrast Exoplanet REsearch VLT-UT3 European consortium PI: Jean-Luc Beuzit

SPHERE concept overview

LAM

Aix+Marseille

Interface with the telescope

LAM

Aix Marseille

Implementation

LAM

Aix*Marseille

Integrations in Grenoble

CPI during integrations

LAM 😒

Aix+Marseille

IRDIS cryo

SPHERE completed in 2013

Reintegration in Paranal

LAM

Aix*Marseille

Transport and installation on UT3

LAM

Aix*Marseille

SPHERE first light (May 6th, 2014)

Fill Mode Collect TRIOTOTIAN - Barren File View Graphics Real-Line 314 Options ONLINE idle Exposure: [Mart] [Mart] [Sour] Garne I -A CRAPHER T MAN 29.6 L'affective Pression Chineses THEFT AND man Experie MI Allaster thin . her | Rat ANT SETTIC AVER 14 -1 PERSONAL STREET, STREE WINGSON. GAREFIL PARSO FL.Press Middle B Inits 7 Ark Darry Man 1 (1 Man- 1 Same 64. CH 1 D.K. Cater So. M. YANG 48301 (7516) Man Mary 5 10 Ark on Solar

LAM >>

Aix*Marseille universite

First close-loop (May 6th, 2014)

LAM S

Open loop

Aix+Marseille

Closed loop

First SPHERE Closed loop image

(06/05/2014, 06:12 UT)

Mag = 7.5 - Seeing ~ 1.3"

EMCCD gain = 200 / AO loop gain = 0.4

WFS Spatial filter = large

IRDIS filter : H2H3

SR ~ 62 %

Scientific sub-systems

LAM

Aix*Marseille

	ZIMPOL	IRDIS	IFS
FoV	3.5"	11"	I.77"
Spectral range	0.5-0.9 µm	0.95-2.30 μm	0.95-1.35 / 1.65 µm
Spectral information	BB, NB filters	BB, NB filters slit spectro @ R =	R = 50 / 30
Linear polarisation	Simultaneou s	Simultaneous (dual- beam)	
Nyquist sampling	@ 0.6 µm	@ 0.95 μm	@ 0.95 μm

SAXO: the adaptive optics system

• deformable mirror built by CILAS

LAM

• wavefront sensor:

Aix*Marseille

- spatially filtered SH to reduce aliasing
- E2V L3CCD detector
- control:
 - developed by ESO/ONERA
 - 1.2 kHz
 - HO loop, DTT loop, PTT loop
 - Kalman filtering
- NCPA calibration with phase diversity

SAXO: the adaptive optics system

LAM

Aix*Marseille universite

IRDIFS: the planet-hunting mode

- SPHERE designed to be a survey instrument from the start
- implementation of the "near-infrared survey" observing mode
 - IRDIFS: IFS in YJ + IRDIS in H
 - IRDIFS_EXT: IFS in YJH + IRDIS in Ks
- extremely efficient for planet hunting

incoming beam

slit+opaque

coron. mask

IRDIS long-slit spectroscopy

LAM

- Dedicated to characterization of planets detected in DBI
- Two observing modes:
 - Low resolution (LRS) \rightarrow R=50 over YJHKs
 - Medium resolution (MRS) → R=350 over YJH
- Limitations:

Aix+Marseille

- not optimal Lyot stop
- field-stabilized observations → no ADI!

IRDIS long-slit spectroscopy

Hinkley et al. (2015)

ZIMPOL: visible imager and polarizer

- classical imager with 2 arms in parallel
- efficient dual-polarisation imager:
 - optimized for extremely high-contrast thanks to dedicated CCD
 - modulation at >1 kHz

Aix+Marseille

records simultaneously the two polarisation

IRDIFS: commissioning results

- Lots of data acquired during commissioning (~40 nights in 2014)
- Many results submitted/accepted

LAM

Aix*Marseille université

Commissioning results

Aix*Marseille universite

• revisiting the HR8799 system (Zurlo et al. submitted, Bonnefoy et al. accepted)

Commissioning results

LAM

Aix+Marseille

• Intriguing structures in AU Mic (Boccaletti et al., accepted in Nature)

400

200

0

Arthur Vigan 22/09/2014

Science verification results

- 40 programs accepted for science verification
- many results already published:

Aix*Marseille universite

• non-detection of a brown dwarf around V471 Tau (Hardy et al. 2015)

- non-detection around Sirius A, best on-sky contrast ever reported (Vigan et al. 2015)
- characterization of a low-mass companion with IRDIS/LSS (Hinkley et al. 2015)

11

12 -

Science verification results

LAM

Aix+Marseille

- asymmetric features in the protoplanetary disk MWC 758 (Benisty et al. 2015)
- dust disk and companion of the nearby AGB star L2 Puppis (Kervella et al. 2015)

• Csépány et al. (2015), Thalmann et al. (2015), Xu et al. (2015), ...

Direct Imaging of Exoplanets with VLT/SPHERE

Arthur Vigan 22/09/2014

And more results to come soon

LAM

HR4796 - IRDIS

Aix Marseille

HD142527 - ZIMPOL

SPHERE guaranteed time of observation

- 260 nights of GTO over 5-6 years
- 20% for ZIMPOL+other science
- 80% dedicated to NIRSUR:

Aix Marseille

- simultaneous IRDIS+IFS obs.
- look for planetary-mass companions
- several **100s of targets**
- large range of age/distance/spectral type
- putting strong constraints on the population of giant planets at wideorbit
- all in visitor mode
- already ~60 stars observed

Comparison to GPI:

- GPIES
- 900 hrs ~100 nights
- 2013-2015
- all in queue mode

Conclusions

Aix*Marseille

- Direct imaging of exoplanets is extremely challenging
- High-contrast and high-angular resolution can be achieved with
 - large ground-based telescopes with extreme AO
 - coronagraphy
 - clever target selection
 - optimised observing strategy
 - advanced data analysis methods
- SPHERE is part of a new generation of direct imaging instruments
 - large scale european project since 2005
 - commissioned at VLT in 2014
 - already many first light and science verification results (>20 papers accepted, submitted or in preparation)
- Many results to come:
 - 260 nights of GTO time
 - many open-time programs