Direct imaging of exoplanets: past, present and future

Arthur Vigan

CNRS Laboratoire d'Astrophysique de Marseille

Outline

- I. Direct imaging in context
- 2. Techniques for high-contrast imaging
- 3. Recent results from large imaging surveys
- 4. A new generation of instruments

Introduction

A multi-facet story

- stellar formation
- formation and physics of exoplanets
- architecture and evolution
- favorable conditions for life
- exo-biology and bio-signatures

Artist view of planet formation

Direct imaging: context

- Transmission & emission spectro
 - composition
 - vertical T-P structure
 - atmospheric circulation
 - evaporation

- Indirect methods
 - Radial Velocity
 - Microlensing
 - Astrometry
 - Transit direct
- Orbital and physical properties:
 - most orbital parameters
 - system architecture & stability
 - planetary interiors
- Statistics
 - >1000 confirmed planets
 + 1000s Kepler candidates
 - frequency down to super-Earths
 - mass/orbit distributions
 - stellar host dependence (Fe/H; SpT; binarity; etc)

CFHT seminar - 04/12/2013

Direct imaging: context

- Direct imaging measures photons from the planet
- Orbital and physical properties:
 - L, a, e, i, ω, t0
 - giant planets >I M_{Jup} at wide-orbit >5 AU
 - system architecture & stability
 - planet-disk interactions
- Spectroscopy:
 - composition
 - cool, non-irradiated, atmospheres
 - low gravity, non LTE, clouds, ...

Observational challenge

Direct imaging has to overcome 2 difficulties

6

High-angular resolution

• Need for large telescopes at the diffraction limit

Keck

- space
- ground-based + AO

High-angular resolution: adaptive optics

- Measure the atmospheric turbulence using a wavefront sensor
- **Correct** it using a deformable mirror
- Correction limited by number of actuators and frequency of correction
- Different generations of systems:

1990s

 ESO3.6m/Come-On+
 VLT/NaCo

 SH WFS; 52 actuators
 SH WFS; 18

 Sr < 10%</td>
 Sr = 40-509

2000s VLT/NaCo SH WFS; 180 actuators Sr = 40-50%

2010s LBT/SPHERE/GPI SH/Pyr WFS; >1000 actuators Sr > 80%

CFHT seminar - 04/12/2013

High-contrast

Sensitivity limited by the star/planet luminosity difference

• long integration times

- Advantages:
 - ?
- Drawbacks:
 - extremely long integration times
 - limited by detector overheads
 - ultimately limited by diffraction

High-contrast

Sensitivity limited by the star/planet luminosity difference

- long integration times
- saturated imaging

- Advantages:
 - increased sensitivity in PSF wings
 - improved SNR
- Drawbacks:
 - loss of angular resolution
 - remanence effects on detectors
 - ultimately limited by diffraction

High-contrast

Sensitivity limited by the star/planet luminosity difference

- long integration times
- saturated imaging
- coronagraphy

- Advantages:
 - suppress diffraction
 - improved SNR
- Drawbacks:
 - possible loss of angular resolution
 - increased system complexity
 - high Strehl ratio required

High-contrast: coronagraphy

- Proposed by Bernard Lyot to observe the solar corona
- Generalized to point like sources
- Very active field of research

CCb

Quasi-static speckles

- high-angular resolution + high-contrast -> not enough!
 - limitations: atmospheric and instrumental speckles
 - speckles are **not static**, but definitely **not random**
- optimized observing strategy, data analysis and target selection

Angular Differential Imaging

 $E = median(D_i)$

Marois et al. (2006) Lafrenière et al. (2007) Mugnier et al. (2010) Soummer et al. (2012)

•••

 \mathbf{A}_{i}

Spectral Differential Imaging

- Based on expected spectral features of the planets vs. flat stellar spectrum
- CH₄ / H₂O absorptions expected for cold, lowmass planets

- Caveat: know cold objects don't show CH4 abs.
 - HR8799b and 2M 1207b
 - unexpected role of CO/CH₄ non-equ. chemistry

Barman et al. (2011); Konopacky et al. (2012); ...

CFHT seminar - 04/12/2013

Target selection

- high-angular resolution + high-contrast + obs. strategy + data analysis
 - \rightarrow increased sensitivity at small separation (0.1"-0.2")
- what about physical units: semi-major axis [AU] and mass [Mjup]?

→ significant role of target selection

Target selection

- several criteria for target selection
 - distance → closer is better
 - 0.1" = 10 AU @ 100 pc
 - age → younger is better
 - nearby young associations and moving groups identified since the 1990s
 - ~300 known young (<300 Myr) nearby (<100 pc) stars
 - stellar mass → more massive is better??
 - indications of stellar mass / planet mass correlation (e.g. Johnson et al. 2010)
 - IR excess → presence of disk

Shkolnik et al. (2012)

Direct imaging surveys

Census of all published direct imaging surveys:

Reference	Telescope	Instr.	Mode	Filter	FoV ("×")	#	$_{\rm SpT}$	Age (Myr)
Chauvin et al. 2003	ESO3.6m	ADONIS	Cor-I	H,K	13×13	29	GKM	≤ 50
Neuhäuser et al. 2003	NTT	Sharp	Sat-I	K	11×11	23	AFGKM	≤ 50
_	NTT	Sofi	Sat-I	H	13×13	10	AFGKM	≤ 50
Lowrance et al. 2005	HST	NICMOS	Cor-I	H	19×19	45	AFGKM	10 - 600
Masciadri et al. 2005	VLT	NaCo	Sat-I	H,K	14×14	28	KM	≤ 200
Biller et al. 2007	VLT	NaCo	SDI	H	5×5	45	GKM	≤ 300
	MMT		SDI	H_{\perp}	5×5	-	-	-
Kasper et al. 2007	VLT	NaCo	Sat-I	L'	28 imes 28	22	GKM	≤ 50
Lafrenière et al. 2007	Gemini-N	NIRI	ADI	H	22 imes 22	85		10-5000
Apai et al. 2008^a	VLT	NaCo	SDI	H	3×3	8	\mathbf{FG}	12 - 500
Chauvin et al. 2010	VLT	NaCo	Cor-I	H,K	28 imes 28	88	BAFGKM	≤ 100
Heinze et al. 2010ab	MMT	Clio	ADI	L', M	15.5×12.4	54	FGK	100-5000
Janson et al. 2011	Gemini-N	NIRI	ADI	H, K	22×22	15	BA	20-700
Vigan et al. 2012	Gemini-N	NIRI	ADI	H,K	22×22	42	\mathbf{AF}	10-400
-	VLT	NaCo	ADI	H, K	14×14	-	-	-
Delorme et al. 2012	VLT	NaCo	ADI	L'	28×28	16	Μ	≤ 200
Rameau et al. 2013c	VLT	NaCo	ADI	L'	28×28	59	\mathbf{AF}	≤ 200
Yamamoto et al. 2013	Subaru	HiCIAO	ADI	H, K	20 imes 20	20	\mathbf{FG}	125 ± 8
Biller et al. 2013	Gemini-S	NICI	Cor-ASDI	$H^{'}$	18×18	80	BAFGKM	≤ 200
Brandt et al. 2013^b	Subaru	HiCIAO	ADI	H	20 imes 20	63	AFGKM	< 500
Nielsen et al. 2013	Gemini-S	NICI	Cor-ASDI	H	18×18	70	BA	$\overline{50}$ -500
Wahhaj et al. 2013^a	Gemini-S	NICI	Cor-ASDI	H	18×18	57	AFGKM	~ 100
Janson et al. 2013^a	Subaru	HiCIAO	ADI	H	20 imes 20	50	AFGKM	≤ 1000
Chauvin et al. 2014 V	'LT Na	Co ADI	Н	14 x 14	4 80 FGI	٢	< 300	

CFHT seminar - 04/12/2013

Information on the population

- Actually very little information, based on non-detections
- Study by Nielsen et al. (2010):
 - giant planets around solar-type stars are rare
- based extrapolations of RV population studies (e.g. Cumming et al. 2008)
- extremely model-dependent

Arthur Vigan - LAM

Family portrait

Close(r) orbit

- A4V-A5V massive primaries
- q = 0.5%; a < 120 AU
- disk signatures

VLT/NaCo

Direct imaging surveys

Census of all published direct imaging surveys:

Reference	Telescope	Instr.	Mode	Filter	FoV (''×'')	#	$_{\rm SpT}$	Age (Myr)
Chauvin et al. 2003 Neuhäuser et al. 2003	ESO3.6m NTT	ADONIS Sharp	Cor-I Sat-I	$_{K}^{H,K}$	13×13 11 × 11	29 23	GKM AFGKM	$\leq 50 < 50$
	NTT	Sofi	Sat-I	H	13×13	10	AFGKM	≤ 50
Lowrance et al. 2005	HST	NICMOS	Cor-I	H	19×19	45	AFGKM	$\overline{10} - 600$
Masciadri et al. 2005	VLT	NaCo	Sat-I	H, K	14×14	28	KM	≤ 200
Biller et al. 2007	VLT	NaCo	SDI	H	5×5	45	GKM	≤ 300
	MMT		SDI	H	5×5	-	-	-
Kasper et al. 2007	VLT	NaCo	Sat-I	L'	28×28	22	GKM	≤ 50
Lafrenière et al. 2007	Gemini-N	NIRI	ADI	H	22×22	85		10-5000
Apai et al. 2008^a	VLT	NaCo	SDI	H	3×3	8	\mathbf{FG}	12 - 500
Chauvin et al. 2010	VLT	NaCo	Cor-I	H,K	28 imes 28	88	BAFGKM	≤ 100
Heinze et al. 2010ab	MMT	Clio	ADI	L', M	15.5×12.4	54	FGK	100-5000
Janson et al. 2011	Gemini-N	NIRI	ADI	H, K	22×22	15	BA	20-700
Vigan et al. 2012	Gemini-N	NIRI	ADI	H,K	22×22	42	\mathbf{AF}	10-400
	VLT	NaCo	ADI	H, K	14×14	-	-	-
Delorme et al. 2012	VLT	NaCo	ADI	L'	28 imes 28	16	Μ	≤ 200
Rameau et al. 2013c	VLT	NaCo	ADI	L'	28 imes 28	59	\mathbf{AF}	≤ 200
Yamamoto et al. 2013	Subaru	HiCIAO	ADI	H,K	20×20	20	\mathbf{FG}	125 ± 8
Biller et al. 2013	Gemini-S	NICI	Cor-ASDI	H	18×18	80	BAFGKM	≤ 200
Brandt et al. 2013^b	Subaru	HiCIAO	ADI	H	20×20	63	AFGKM	≤ 500
Nielsen et al. 2013	Gemini-S	NICI	Cor-ASDI	H	18×18	70	BA	50-500
Wahhaj et al. 2013^a	Gemini-S	NICI	Cor-ASDI	H	18×18	57	AFGKM	~ 100
Janson et al. 2013^a	Subaru	HiCIAO	ADI	H	20×20	50	AFGKM	≤ 1000
Chauvin et al. 2014 V	'LT Na	Co ADI	Н	14 x 14	80 FGI	<	< 300	

CFHT seminar - 04/12/2013

IDPS survey: context

Recent breakthrough discoveries around young A stars

Marois et al. (2008, 2010)

β Pictoris - 12 Myr

Lagrange et al. (2010)

Fomalhaut - 100-300 Myr

Kalas et al. (2008, 2013)

HD 95086 - 17 Myr

Rameau et al. (2013)

 Recent discoveries of RV planets around old A stars Lick and Keck subgiant surveys

(Johnson et al. 2010, 2011; Bowler et al. 2010)

→ strong correlation between stellar mass and planet mass

IDPS survey: sample, observations, analysis

- sample of 38 young A-stars + 4 Fstars
 - β Pic
 - HR8799
- observations:
 - 2007-2012
 - NACO, NIRI
 - ADI
 - H- and K-band
 - saturated imaging
- data analysis with LOCI

no new substellar companions

A0
 A1
 A2

IDPS survey: results

CF

 $f \in [5.9\%, 18.8\%]$ at 68% confidence • 3 $M_{Jup} \le mass \le 14 M_{Jup}$

• 5 AU \leq a \leq 320 AU

Result confirmed by Rameau et al. (2013) In agreement with NICI survey (Nielsen et al. 2013)

New generation of instruments

• What do we want?

CFHT semina

- get closer in separation
- reach higher contrast
- get spectral information
 - %08 % HR 8799 **β** Pictoris Johnson et al. 10 Mass (M_{Jup}) NaCo/NIRI 1 **GPI/SPHERE** RV 1.0 10.0 100.0 1000.0 0.1 Semi-major axis (AU)

- What is currently missing?
 - high-order AO correction at fast rate (>1 kH
 - efficient coronagraphs with small IWA

New generation of dedicated instruments

Two main contenders

Gemini Planet Imager - GPI Gemini South North-American consortium PI: Bruce Macintosh

CFHT seminar - 04/12/2013

Spectro-Polarimetric High-contrast Exoplanet REsearch VLT-UT3 European consortium PI: Jean-Luc Beuzit

SPHERE: telescope interface

CFHT seminar - 0

SPHERE: concept overview

SPHERE: implementation

SPHERE in pictures

SPHERE in pictures

SAXO: overview

- deformable mirror built by CILAS
- wavefront sensor:
 - spatially filtered SH to reduce aliasing
 - E2V L3CCD detector
- control:
 - developed by ESO/ONERA
 - 1.2 kHz
 - HO loop, DTT loop, PTT loop
 - Kalman filtering
- NCPA calibration with phase diversity

SAXO: results

Science sub-systems

	ZIMPOL	IRDIS	IFS
FoV	3.5"	11"	I.77"
Spectral range	0.5-0.9 μm	0.95-2.30 μm	0.95-1.35 / 1.65 µm
Spectral information	BB, NB filters	BB, NB filters slit spectro @ R =	R = 50 / 30
Linear polarisation	Simultaneou s	Simultaneous (dual- beam)	
Nyquist sampling	@ 0.6 µm	@ 0.95 μm	@ 0.95 μm

IRDIS: dual-band imaging

- 4 observing modes
- main mode is **dual-band imaging (DBI)**
 - two images acquired simultaneously at close wavelength
 - 5 pairs of filters covering YJHKs

H2 = 1.593 μm H3 = 1.667 μm H2-H3

IRDIS: performance in DBI

- Performance estimated in SDI only
- ADI cannot be simulated in the lab
 - fixed pupil outside of the instrument
 - wobble of the derotator
- **simulated ADI** with discrete derotator positions:

IRDIS: long slit spectroscopy

- LSS mc 400000000-200000000 **Strong modulation** unique ::000::::00 by speckles 800000000 -no:: coron 50000000 400000000 not rea 200000000- specific 117,000 137.000 177.000 197.000 217.000 157.000105.000 185.000 105.000 106.000 Wavelengt possible import • R =
 - unique instrument at this level of contrast

fake planet inserted at 0.5"

- optimized speckle subtraction
- on-going work to improve data analysis

IRDIS: LSS performance

CFHT seminar - 04/12/2013

SPHERE: schedule

Preliminary acceptance in	mid-December 2013				
Instrument packing	January 2014				
Reintegration in Paranal, standalone tests	March 2014				
First technical nights	mid-April 2014				
First commissioning	May 2014				
First call for proposal	September 2014				
End of all commissionings	October 2014				
Science Verification Time	end-2014				
First operations in open time	March 2015				

SPHERE: guaranteed time

- 260 nights of GTO over 5-6 years
- 20% for ZIMPOL+other science
- 80% dedicated to **NIRSUR**:
 - simultaneous IRDIS+IFS obs
 - Y-H coverage
 - look for planetary-mass companions
 - several IOOs of targets
 - large range of age/distance/spectral type
 - putting strong constraints on the population of giant planets at wideorbit
 - all in visitor mode

Comparison to GPI:

- GPIES
- 900 hrs ~100 nights
- 2013-2015
- all in queue mode

Conclusions

• This is just the beginning!

IDPS survey: Monte Carlo simulations

- Monte-Carlo simulations to estimates the planets potentially detectable
- MESS code (Bonavita et al. 2012)
- result: probability of detections map for each target
- assumptions:
 - evolutionary models assumptions: COND2003 (Baraffe et al. 2003)
 - planet population distribution in mass and semi-major axis

Direct imaging surveys

Census of all published direct imaging surveys:

Reference	Telescope	Instr.	Mode	Filter	FoV ("×")	#	SpT	Age (Myr)
Chauvin et al. 2003 Neuhäuser et al. 2003	ESO3.6m NTT	ADONIS Sharp	Cor-I Sat-I	$_{K}^{H,K}$	13 × 13 11 × 11	29 23	GKM AFGKM	$\leq 50 \leq 50$
	NTT	Sofi	Sat-I	H	13×13	10	AFGKM	≤ 50
Lowrance et al. 2005	HST	NICMOS	Cor-I	H	19×19	45	AFGKM	10 - 600
Masciadri et al. 2005	VLT	NaCo	Sat-I	H,K	14×14	28	KM	≤ 200
Biller et al. 2007	VLT	NaCo	SDI	H	5×5	45	GKM	≤ 300
	MMT		SDI	H	5×5	-	-	-
Kasper et al. 2007	VLT	NaCo	Sat-I	L'	28 imes 28	22	GKM	≤ 50
Lafrenière et al. 2007	Gemini-N	NIRI	ADI	H	22×22	85		10-5000
Apai et al. 2008^a	VLT	NaCo	SDI	H	3×3	8	\mathbf{FG}	12-500
Chauvin et al. 2010	VLT	NaCo	Cor-I	H,K	28 imes 28	88	BAFGKM	≤ 100
Heinze et al. 2010ab	MMT	Clio	ADI	L', M	15.5×12.4	54	\mathbf{FGK}	100-5000
Janson et al. 2011	Gemini-N	NIRI	ADI	H,K	22 imes 22	15	BA	20-700
Vigan et al. 2012	Gemini-N	NIRI	ADI	H,K	22×22	42	\mathbf{AF}	10-400
	VLT	NaCo	ADI	H,K	14×14	-	-	-
Delorme et al. 2012	VLT	NaCo	ADI	L'	28 imes 28	16	Μ	≤ 200
Rameau et al. 2013c	VLT	NaCo	ADI	L'	28×28	59	\mathbf{AF}	≤ 200
Yamamoto et al. 2013	Subaru	HiCIAO	ADI	H, K	20×20	20	\mathbf{FG}	125 ± 8
Biller et al. 2013	Gemini-S	NICI	Cor-ASDI	H	18×18	80	BAFGKM	≤ 200
Brandt et al. 2013^b	Subaru	HiCIAO	ADI	H	20 imes 20	63	AFGKM	≤ 500
Nielsen et al. 2013	Gemini-S	NICI	Cor-ASDI	H	18×18	70	BA	50-500
Wahhaj et al. 2013^a	Gemini-S	NICI	Cor-ASDI	H	18×18	57	AFGKM	~ 100
Janson et al. 2013^a	Subaru	HiCIAO	ADI	H	20 imes 20	50	AFGKM	≤ 1000
Chauvin et al. 2014 V	'LT Na	aCo ADI	Н	14 x 14	4 80 FGI	<	< 300	

CFHT seminar - 04/12/2013

NaCo LP survey: sample

- project started in 2009
- SPHERE collaboration
- based on exhaustive compilation of young stars done for SPHERE
- sample divided in two groups:
 - solar-type stars (0.4 < B-V < 1.2)
 - obs sample: δ ≤ 25°, age ≤ 200 Myr, d ≤ 100 pc, R ≤ 9.5, no binaries (SB or <6"), never observed at high-contrast
 - archive sample: stars from previous surveys matching the same criteria

NaCo LP: observations, analysis

- Large program + open time for followup over P84-P90
- total of 16.5 nights (visitor: 10.5; service: 6.0)
- instrumental setup:
 - broadband H
 - ADI
 - Lyot 0.7" coronagraph (run 1+2), saturated imaging (for subsequent observations)
 - T_{exp} = 35-40 min/target
- analysis with 4 pipelines

NaCo LP: results

• no new substellar companions

- HD61005 (G8V, 3 (a)
 - debris disk r
 - very asymmetry
 - ring center c 1"
- HD8049 (K2, 34 p

VLT/NaCo image, Buenzli et al. (2010)

- interesting case of false positive:
- age estimated to 100-400 Myr from stellar activity → brown dwarf
- contradiction with other indicators
- RV only compatible with WD
- WD confirmed with SINFONI spectroscopy

HST/ACS image, Maness et al. (2009)

Indicator	Measure	Ref	Age (Myr)
Li EW (mA)	0	1,2	>500
$\log R_{\rm HK}$	-4.25 ± 0.05	1,3	90
$\log L_{\rm X}/L_{\rm bol}$	-4.24	1	182
$P_{\rm rot}$ (d)	8.3 ± 0.1	1	360
$P_{\rm rot}$ (d)			380 ± 30
U, V, W (km/s)	18,-47,-28	6	old (few Gyr)

NaCo LP: statistical analysis

- analysis similar to IDPS, but without detection
- strength of the analysis is the large size of the sample

