

SF 20

star formation measurements

Véronique BUAT, Laboratoire Astrophysique Marseille (LAM) & Aix-Marseille University (AMU), France

Overview

- General considerations and calculations, stellar emission and timescales
- The impact of the star formation history on SFR determinations
- *the different SFH adopted for galaxies at all redshift
- *accounting for nebular emission lines.
- The real world: dust absorption & re-emission
- *IR and composite star formation tracers
- *Dust attenuation law
- *Measuring dust obscuration without IR data
- **SED fitting** to measure SFRs

Some of the topics I will not address

- Tracers other than the stellar light and hydrogen (Hα) recombination lines: [OII]3727, PDR lines [CII]158 [OI]63, radio continuum, gamma ray bursts....
- The impact of varying stellar tracks (rotation, metallicity...), initial mass function
 And certainly a lot of other ones.....

Outline

- General considerations and calculations, stellar emission and timescales
- The impact of the star formation history on SFR determinations
- *the different SFH adopted for galaxies at all redshift
- *accounting for nebular emission lines.
- The real world: dust absorption & re-emission
- *IR and composite star formation tracers
- *Dust attenuation law
- *Measuring dust obscuration without IR data
- SED fitting to measure SFRs

Simple recipes:

SFR is assumed to be constant over T SFR proportional to the **intrinsic** monochromatic Luminosity:

$$SFR = \begin{cases} \int_{M_{low}}^{M_{up}} \int_{0}^{T} F_{\lambda}(m,\theta) \, d\theta) \Psi(m) \, dm \end{cases}^{-1} L(\lambda,T) & \text{if the luminosity reaches a steady state} \\ L(\lambda,T) = L(\lambda) \end{cases}$$

SFR
$$(M_{\odot} yr^{-1}) = 1.4 \times 10^{-28} L_{\nu} \text{ (ergs s}^{-1} \text{ Hz}^{-1}\text{)}.$$

1500-2800 A, Salpeter IMF, >10⁸ years of CSFR

SFR
$$(M_{\odot} yr^{-1}) = 7.9 \times 10^{-42} L(H\alpha) \text{ (ergs s}^{-1}) = 1.08 \times 10^{-53} Q(H^0) \text{ (s}^{-1}).$$

Case B recombination, $T_e = 10^4$ K, Salpeter IMF, « nearly » instantaneous SFR

from Kennicutt 1998, ARAA

SFR (M_{\odot} yr⁻¹) = C L_v (erg s⁻¹ Hz⁻¹)

Boissier 2013

SFR (M_{\odot} yr⁻¹) = C L_v (erg s⁻¹ Hz⁻¹)

Boissier 2013

Which stars do produce most of the light?

Boquien, Buat & Perret 2014

Outline

- General considerations and calculations, stellar emission and timescales
- The impact of the star formation history on SFR determinations

*the different SFH adopted for galaxies at all redshift

- *accounting for nebular emission lines.
- The real world: dust absorption & re-emission
- *IR and composite star formation tracers
- *Dust attenuation law
- *Measuring dust obscuration without IR data
- SED fitting to measure SFRs

But dwarf galaxies: best cases to measure SFH variations, *Weisz+12, Lee+09*

Variations of the SFH seen in $H\alpha/UV$ ratio:

Star Formation at high z Some evidence for an increasing star formation at z> 2

Power law alpha=1.7 Increasing exp tau~0.5 Gyr (Papovich+11)

More physical models: Increasing SFR allows a SF starting at very high z (Maraston+10, Lee+11, Renzini09) Exponentially decreasing and increasing SFR \rightarrow calibration not very different from a CSF for 'realistic' SFH

Models from MIRAGE hydrodynamical simulations Boquien, Buat & Perret 2014

•SFR estimators in Lyc, FUV, NUV, U,TIR, assuming a constant SFR over 100 Myr

No attenuation

except in TIR :all the stellar luminosity is re-emitted by dust)

Except for Lyc, overestimation of the SFR: 25% in FUV , 65% in U Explained by the contribution of stars older than 100 Myr

→ SFR estimators on timescales larger than 100 Myr are better for non starbursting galaxies GDSF 2015, Chania, Crete

Impact of the SFH on the Main Sequence (SFR-M_{star} relation)

The Main Sequence (SFR-M* relation) argue for a smooth evolution of the star formation, only starburst galaxies, above the Main Sequence, may experiment short bursts

Choosing different Star Formation Histories to derive the SFR-M_{star} relation in a consistent way: Impact of the SFH

Buat +14

(U)LIRGs at z~2 analysed with the GRASIL code

Lo Faro (2013/14)

Star formation history: simple modeling versus 'realistic' simulations

Simple models are usually assumed Schaerer+14

SFH from numerical models, compared to simple models *Ciesla+15*

Outline

- General considerations and calculations, stellar emission and timescales
- The impact of the star formation history on SFR determinations
- *the different SFH adopted for galaxies at all redshift

*accounting for nebular emission lines.

- The real world: dust absorption & re-emission
 *ID and composite star formation tracers
- *IR and composite star formation tracers
- *Dust attenuation law
- *Measuring dust obscuration without IR data
- SED fitting to measure SFRs

Pacifici+12, pseudo-observations from Millenium simulations, analysis of SEDs

Photometric data at high redshift : the presence of emission lines in the band may strongly modify the measure of the SFR

de Barros+14, see also Stark+13, Gonzalez+13

Outline

- General considerations and calculations, stellar emission and timescales
- The impact of the star formation history on SFR determinations
- *the different SFH adopted for galaxies at all redshift
- *accounting for nebular emission lines.
- The real world: dust absorption & re-emission
 *IR and composite star formation tracers
- *Measuring dust obscuration without IR data
- *Dust attenuation law
- SED fitting to measure SFRs

Dust absorption and re-emission in galaxies: general context

Adapted from Muzzin+10

10°

UV and IR luminosity functions strongly differ

Gruppioni+13, Cucciati+12, Burgarella+13

At least half of the SFR is locked in IR at z=0 and the fraction increases with z (up to z~2) (Takeuchi+06, Burgarella+13)

L_{IR} (5-1000 μ m) : a reliable measure of the SFR?

A very strong hypothesis:

complete dust obscuration, dust heating fully due to young stars

Timescale for the calculations: constant SFR over 10 -100 Myr

L_{IR} = L_{bol} (Kennicutt 98)

 \rightarrow calibration varying by ~30% from 10 to 100 Myr (SB99)

GDSF 2015, Chania, Crete

Composite tracers: stellar and dust emissions

(Hirashita+04, Iglesias-Paramo+07,Kennicutt+09, Calzetti+07,09,Hao+11, Kennicutt & Evans12, Leroy+09,+12, Zhu+08, Elbaz+07, Daddi+07, Wuyts+11 etc...)

Combining L_{IR} and L_{FUV} would give the total light from young stars. In a very simplified way we can write:

 $L_{FUV(corr)} = L_{FUV(obs)} + k_{IR} L_{IR}$

 $\rightarrow A_{FUV} = f(IRX), IRX = L_{IR}/L_{FUV(obs)}$

L_{IR}/L_{UV} flux ratio is a robust tracer of the dust attenuation for star forming galaxies only

Star forming galaxies and various geometries/dust properties Gordon et al. 2000

Cortese et al. 08

The calibration depends on the star formation history

Various combinations of luminosity from young stars (Hα, FUV, NUV) and from dust (L(TIR), L(24μm), L(8μm))

TABLE 1	
MULTI-WAVELENGTH	DUST-CORRECTIONS

Composite Tracer	Reference
$L(FUV)_{corr} = L(FUV)_{obs} + 0.46 L(TIR)$	1
$L(FUV)_{corr} = L(FUV)_{obs} + 3.89 L(25 \mu\text{m})$	1
$L(FUV)_{corr} = L(FUV)_{obs} + 7.2 E14 L(1.4 GHz)^{a}$	1
$L(NUV)_{corr} = L(NUV)_{obs} + 0.27 L(TIR)$	1
$L(NUV)_{corr} = L(NUV)_{obs} + 2.26 L(25\mu m)$	1
$L(NUV)_{corr} = L(NUV)_{obs} + 4.2 E14 L(1.4 GHz)^{a}$	1
$L(H\alpha)_{corr} = L(H\alpha)_{obs} + 0.0024 L(TIR)$	2
$L(H\alpha)_{corr} = L(H\alpha)_{obs} + 0.020 L(25\mu\text{m})$	2
$L(H\alpha)_{corr} = L(H\alpha)_{obs} + 0.011 L(8\mu\text{m})$	2
$L(H\alpha)_{corr} = L(H\alpha)_{obs} + 0.39 E13 L(1.4 GHz^{a})$	2

(1)Hao et al. 2011; (2) Kennicutt et al. (2009)

Composite tracers: Kennicutt & Evans, 2012, see also Calzetti+07, Zhu+08, Hirashita+03, Bell03, Leroy+08,12 Monochromatic IR tracers: Calzetti+05,07,09; Wu+05, Zhu+08, Rieke+09 GDSF 2015, Chania, Crete

Variations of the calibration of composite tracers inside galaxies

Boquien et al, in prep

k_{IR} increases with sSFR

Values in agreement with measurements of Hao+11 for luminosity weighted means

Outline

- General considerations and calculations, stellar emission and timescales
- The impact of the star formation history on SFR determinations
- *the different SFH adopted for galaxies at all redshift *accounting for nebular emission lines.
- The real world: dust absorption & re-emission
 *IR and composite star formation tracers

*Measuring dust obscuration without IR data

- *Dust attenuation law
- SED fitting to measure SFRs

Bologna PhD school-May 2014

Measuring dust attenuation without IR data : the slope of the UV continuum

Meurer (+95,+99) $F_{\lambda} = \lambda^{\beta}$ (1200< λ <~2500 A) IRX for local starburts

Normal star forming galaxies found below the SB law LIRGs and ULIRGs above the SB law: various ages for the UV emitting populations and/or dust properties?

APERTURE EFFECTS also affect the original relation (Overzier+11, Takeuchi+12)

e.g. Meurer+99, Dale+07, +09, Boissier+07, Munoz-Mateos+09, Hao+11, Howell+10, Goldader+02, Buat+05, Overzier+11, Casey+14 etc..

See also Burgarella+07, Reddy+08

Capak+15, Nature, in press

Lyman Break Galaxies at z=5-6 observed with ALMA with a very low dust content and not very blue colors.....

Is there a universal Attenuation-Stellar mass relation?

Price+14

Linking the amount of attenuation in the emission lines and the stellar continuum

A differential attenuation in galaxies: ionized gas more attenuated than stellar continuum

 $E(B-V)_s = 0.44 E(B-V)_a$ Calzetti 97, Calzetti 01

Various estimates at high redshift, inhomogeneous methods used to apply the Calzetti's recipe (*Kashino+13, Price+14, Reddy+15*)

Large scatter... E(B-V)_{gas}-E(B-V)_{star} may vary with SFR (increase), sSFR (Reddy+15, Price+14)

GDSF 2015, Chania, Crete

Outline

- General considerations and calculations, stellar emission and timescales
- The impact of the star formation history on SFR determinations
- *the different SFH adopted for galaxies at all redshift *accounting for nebular emission lines.
- The real world: dust absorption & re-emission
- *IR and composite star formation tracers
- *Measuring dust obscuration without IR data

*Dust attenuation law

• SED fitting to measure SFRs

Dust attenuation: reconstructing the SED (mainly in UV)

2019, 010110,

Attenuation & extinction laws in galaxies

They are different because of absorption & scattering of photons

Kriek & Conroy 13 : Shallower curves and weaker bumps for large sSFR

Shallower curves for higher attenuation (Tuffs+04, Pierini+04, Wild+11 UV bumps detected in GRB hosts (e.g. Liang&Li, 10,11)

Outline

- General considerations and calculations, stellar emission and timescales
- The impact of the star formation history on SFR determinations
- *the different SFH adopted for galaxies at all redshift
- *accounting for nebular emission lines.
- The real world: dust absorption & re-emission
 *IR and composite star formation tracers
 *Measuring dust obscuration without IR data
 *Dust attenuation law
- SED fitting to measure SFRs

Parameter estimation

 Classical χ² minimization to determine the (single) best fit model → not optimal for a large range of parameters

To compare models: **reduced** χ^2 degree of freedom is sometimes difficult to estimate

• **Probability distribution functions (PDF)** for each parameter built by marginalizing over all the other parameters:

 \rightarrow mean, median, dispersion, quartiles of the PDF

• Monte Carlo Markov Chain (MCMC) statistical analyses

http://www.sedfitting.org/SED08/Welcome.html

Using Mock catalogues to control the results:

pseudo-galaxies created from the SED models or the data to check the internal accuracy of the codes

Giovannoli et al. 2011, pseudo-galaxies and data drawn from the best fit models (Walcher+08, daCunha+08)

The new CIGALE code (cigale.lam.fr)

Noll+09, Burgarella+15, Boquien+15, in prep

•Written in PYTHON, users can add their own modules
•Star formation histories, standard or provided by the users
•Stellar populations models: Bruzual & Charlot 03, Maraston+05
•Attenuation curves with free parameters (with or without a bump, differential attenuation (old/young stars)
•IGM attenuation
•Dust emission models: Draine & Li 07, Dale+14, Casey 12
•Nebular lines: HII regions only
•AGN modules: Fritz+06 models
•Non detections and upper limits accounted for
•Very fast on multicore computers (8 cores = ~1000 models/s)

Creation of artificial catalogues: generates SEDs for any star formation histories

can be coupled with the output of theoretical models (Semi-analytical models, hydrodynamical models (*Boquien+14, Cousin+ in prep*)

Best model for M82 at z = 0.0. Reduced χ^2 =1.35

Burgarella +15, in prep.

A very short summary

- Accurate measurements of the SFR: a difficult task
- Classical recipes are derived under specific prescriptions, the users must check their validity for their own study.
- The star formation history can be critical, SFR and stellar masses have to be derived in a consistent way
- SED fitting methods with appropriate SFHs are likely to be reliable
- Dust attenuation: very difficult to estimate in the absence of IR data...

